Skip to main content
Log in

Interactive effects of ultraviolet radiation and salinity on the ecophysiology of two Arctic red algae from shallow waters

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In a comparative ecophysiological study, the abundant red macroalgae Devaleraea ramentacea (L.) Guiry and Palmaria palmata (L.) O. Kuntze from shallow waters of the Arctic Kongsfjord (Spitsbergen) were exposed to hyposaline and hypersaline media, in combination with and without artificial UV radiation, to evaluate the interactive effects of both environmental parameters on optimum quantum yield of photosynthesis, as well as on the physiological capability to synthesise and accumulate photoprotective mycosporine-like amino acids (MAAs). While D. ramentacea exhibited euryhaline features and acclimated well to the UV radiation applied, P. palmata can be characterised as a stenohaline plant because of its high mortality even under mild hyposaline conditions (15 PSU). In addition, the latter species showed a limited ability to acclimate to changing PAR/UV radiation, pointing to a relatively low physiological plasticity. Both species synthesised and accumulated MAAs after UV treatment. However, only in D. ramentacea was a correlation between increasing MAA concentration and decreasing photosynthetic sensitivity under UV observed. All ecophysiological data from the laboratory correlate well with field observations, where both red-algal species co-exist in the same shallow-water habitat of the Kongsfjord. However, while P. palmata becomes more often greenish, sometimes slightly bleached over the summer months, D. ramentacea appears much more healthy under the prevailing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A, B.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7A, B.
Fig. 8.

Similar content being viewed by others

References

  • Adams NL, Shick JM (1996) Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis.Photochem Photobiol 64:149–158

    CAS  Google Scholar 

  • Aguilera J, Karsten U, Lippert H, Vögele B, Philipp E, Hanelt D, Wiencke C (1999) Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar Ecol Prog Ser 191:109–119

    Google Scholar 

  • Aguilera J, Dummermuth A, Karsten U, Schriek R, Wiencke C (2002) Enzymatic defences against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biol 25:432–441

    Google Scholar 

  • Bandaranayake WM (1998) Mycosporines: are they nature's sunscreens? Nat Prod Rep 15:159–172

    Google Scholar 

  • Bird NL, Chen LCM, McLachlan M (1979) Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta), and Fucus serratus (Fucales, Phaeophyta). Bot Mar 22:521–527

    Google Scholar 

  • Bischof K, Hanelt D, Karsten U, Brouwer P, Tüg H, Wiencke C (1998a) Acclimation of brown algal photosynthesis to penetration of light and ultraviolet radiation in Arctic coastal waters (Kongsfjord, Spitsbergen). Polar Biol 20:388–395

    Article  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1998b) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605

    Article  Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    CAS  Google Scholar 

  • Cordi B, Depledge MH, Price DN, Salter LF, Donkin ME (1997) Evaluation of chlorophyll fluorescence, in vivo spectrophotometric pigment absorption and ion leakage as biomarkers of UV-B exposure in marine macroalgae. Mar Biol 130:41–49

    CAS  Google Scholar 

  • Dunlap WC, Shick MJ (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34:418–430

    Article  Google Scholar 

  • Franklin LA, Forster RM (1997) The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–232

    Article  Google Scholar 

  • Garcia-Pichel F, Wingard CE, Castenholz RW (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Environ Microbiol 59:170–176

    CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Häder DP, Figueroa FL (1997) Photophysiology of marine macroalgae. Photochem Photobiol 66:1–14

    Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Article  Google Scholar 

  • Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B Biol 30:179–187

    Google Scholar 

  • Hanelt D, Tüg H, Bischof K, Groß C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658

    CAS  Google Scholar 

  • Healey FP (1972) Photosynthesis and respiration of some Arctic seaweeds. Phycologia 11:267–271

    Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey R, Lönne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg SA, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, Prisco G di, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Google Scholar 

  • Irvine LM (1983) Seaweeds of the British Isles, vol 1. Rhodophyta. British Museum, London

  • Kain JM, Norton TA (1990) Marine ecology. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 377–422

  • Karsten U, Wiencke C (1999) Factors controlling the formation of UV-absorbing mycosporine-like amino acids in the marine red alga Palmaria palmata from Spitsbergen (Norway). J Plant Physiol 155:407–415

    CAS  Google Scholar 

  • Karsten U, Franklin LA, Lüning K, Wiencke C (1998a) Natural ultraviolet and photosynthetic active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (Rhodophyta). Planta 205:257–262

    Article  CAS  Google Scholar 

  • Karsten U, Sawall T, Wiencke C (1998b) A survey of the distribution of UV-absorbing substances in tropical macroalgae. Phycol Res 46:271–279

    CAS  Google Scholar 

  • Karsten U, Bischof K, Hanelt D, Tüg H, Wiencke C (1999) The effect of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea (Rhodophyta). Physiol Plant 105:58–66

    Article  CAS  Google Scholar 

  • Karsten U, Bischof K, Wiencke C (2001) Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters followed by exposure to natural solar radiation. Oecologia 127:11–20

    Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53

    CAS  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181-199

    Google Scholar 

  • Lippert H, Iken K, Rachor E, Wiencke C (2001) Epifauna associated with macroalgae in the Kongsfjord. Polar Biol 24:512–522

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. Wiley, New York

  • Mostaert AS, Karsten U, King RJ (1995) Physiological responses of Caloglossa leprieurii (Ceramiales, Rhodophyta) to salinity stress. Phycol Res 43:215–222

    Google Scholar 

  • Neale PJ, Banaszak AT, Jarriel CR (1998) Ultraviolet sunscreens in Gymnodinium sanguineum (Dinophyceae): mycosporine-like amino acids protect against inhibition of photosynthesis. J Phycol 34:928–938

    CAS  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis. From the molecular mechanisms to the field. BIOS Scientific Publications, Oxford, pp 1–24

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

    CAS  Google Scholar 

  • Rex M, Dethloff K, Handorf D, Herber A, Lehmann R, Neuber R, Notholt J, Rinke A, Gathen P von der, Weisheimer A, Gernandt H (2000) Arctic and Antarctic ozone layer observations—chemical and dynamical aspects of variability and long-term changes in the polar stratosphere. Polar Res 19:193–204

    Google Scholar 

  • Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, Waters KJ (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. The principle and practice of statistics in biological research. Freeman, New York

  • Wängberg SA, Selmer JS, Ekelund NGA, Gustavson K (1996) UV-B effects on nordic marine ecosystem. Tema Nord 1996. Nordic Council of Ministers, Copenhagen

  • Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Bot Acta 106:78–87

    Google Scholar 

  • Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Heike Lippert, Eva Philipp and Stefan Kremb for providing field samples, and the Ny-Ålesund International Research and Monitoring Facility for their support. This project was financially supported by the Deutsche Forschungsgemeinschaft (Ka 899/3-1/2) and the German Research Minister (BMBF) (project MONA-03F0229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Karsten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karsten, U., Dummermuth, A., Hoyer, K. et al. Interactive effects of ultraviolet radiation and salinity on the ecophysiology of two Arctic red algae from shallow waters. Polar Biol 26, 249–258 (2003). https://doi.org/10.1007/s00300-002-0462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-002-0462-z

Keywords

Navigation