Skip to main content

Advertisement

Log in

Concise review of the genus Alaria Greville, 1830

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The brown seaweeds of the genus Alaria are economically important species in respect of food, health supplements and cosmetics. They are used as a sea vegetable in many Asian countries and are becoming increasingly popular in western cuisine. This has led to the development of cultivation of this genus in Europe. As the species in the genus are adapted to temperate-to-cold waters in the northern hemisphere, its distribution is restricted to specific zones, e.g. Alaria esculenta, to the 16 °C isotherm explaining its absence in the southern North Sea and beyond the English Channel to the south. It has been observed that the genus Alaria has a high level of morphological plasticity and over 40 different species have been ascribed to the genus in the last century. Most species have been described from the North Pacific in cold temperate waters of the northern hemisphere and only a few from the North Atlantic. Recent advances in taxonomy and phylogeny have reduced several species to the Alaria marginata complex and the polymorphic Alaria esculenta species complex and moved one species to a new genus reducing the number to eight species and one sister species. Alaria mostly occupies wave-exposed subtidal rocky shores and is of interest for its food value and cultivation potential. Aquaculture of Alaria is highly attractive due to easy practices, fast growth and economic benefits (job creation, processing etc) and environmental benefits (bioremidiation, IMTA, carbon sink). Alaria is traditionally consumed in Japan, Russia, Europe and North America; and its popularity is on the increase due to changing nutritional habits in the global population. Many interesting bioactive molecules, minerals and vitamins and a mild flavour profile make Alaria of interest for the food, functional food and health and well-being sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agardh CA (1817). Synopsis algarum Scandinaviae, adjecta dispositione universali algarum. pp. [i]-xl, [1]-135. Ex officina Berlingiana, Lundae [Lund]

  • Agardh JG (1848) Species genera et ordines algarum, vol 1. Algas Fucoideas complectens, Lund

    Google Scholar 

  • Agardh JG (1872) Bidrag till kännedomen af Grönlands Laminarieer och Fucaceer. K Svensk Vet-Akad Handl 10:1–31

    Google Scholar 

  • Ahn M-J, Yoon K-D, Min S-Y, Lee JS, Kim JH, Kim TG, Kim SH, Kim N-G, Huh H, Kim J (2004) Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol Pharmaceut Bull 27:544–547

    CAS  Google Scholar 

  • Ar Gall E (Yvan Le Gall), Asensi A, Kloareg DM, Kloareg B (1996) Parthenogenesis and apospory in the Laminariales: a flow cytometry analysis. Eur J Phycol 31, 369–380

  • Baardseth E (1956) The growth rings in Alaria stipes. In: Braarud T, Sørensen NA (eds) 2nd International Seaweed Symposium. Pergamon Press, London, pp. 153–157

  • Bachelot de la Pylaie, AJM (1830 ‘1829’). Flora de l’Ile Terre-Neuve et des Iles Saint Pierre et Miclon. Livraison [algae]. pp. 1-128, Paris

  • Bak UG, Mols-Mortensen A, Gregersen O (2018) Production method and cost of commercial-scale offshore cultivation of kelp in the Faroe Islands using multiple partial harvesting. Algal Res 33:36–47

    Google Scholar 

  • Bernard M, Strittmatter M, Murúa P, Heesch S, Cho GY, Leblanc C, Peters AF (2019) Diversity, biogeography and host specificity of kelp endophytes with a focus on the genera Laminarionema and Laminariocolax (Ectocarpales, Phaeophyceae). Eur J Phycol 54:39–51

    CAS  Google Scholar 

  • Blinn DW, Markham JW (1969) Development of gametophytes of Alaria marginata P.& R. and Hedophyllum sessile (C. Ag.) Setch. In saline pond water from British Columbia. Phycologia 8:51–55

    CAS  Google Scholar 

  • Blikra MJ, Løvdal T, Løvda T, VakaDagbjørn MJ, Skipnes (2019) Assessment of food quality and microbial safety of brown macroalgae (Alaria esculenta and Saccharina latissima). J Sci Food Ag 99:1198–1206

    CAS  Google Scholar 

  • Bory de Saint-Vincent JBGM (1826) Laminaire. Dict Class Hist Nat 9:187–194

    Google Scholar 

  • Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgol Meeresunters 42:199–241

    Google Scholar 

  • Breeman AM, Pakker H (1994) Temperature ecotypes in seaweeds: adaptive significance and biogeographic implications. Bot Mar 37:171–180

    Google Scholar 

  • Brennan AT (Mrs RA O’Shea) (1950) Notes on some common Irish seaweeds. Department of Industry and Commerce and Institute for Industrial Standards and Research. Dublin. pp. [i-iv], 1–28

  • Broch OJ, Alver MO, Bekkby T, Gundersen H, Forbord S, Handå A, Skjermo J, Hancke K (2019) The kelp cultivation potential in coastal and offshore regions of Norway. Front Mar Sci 5:529

    Google Scholar 

  • Buggeln RG (1974a) Negative phototropism of the haptera of Alaria esculenta (Laminariales). J Phycol 10:80–82

    Google Scholar 

  • Buggeln RG (1974b) Physiological investigations on Alaria esculenta (L.) Grev. (Laminariales) I. elongation of the blade. J Phycol 10:283–288

    CAS  Google Scholar 

  • Buggeln RG (1976) The rate of translocation in Alaria esculenta (Laminariales, Phaeophyceae). J Phycol 12:439–442

    Google Scholar 

  • Buggeln RG (1977) Physiological investigations on Alaria esculenta (Lamniariales, Phaeophyceae) II. Role of translocation in blade growth. J Phycol 13:212–218

    Google Scholar 

  • Buggeln RG (1978a) Physiological investigations on Alaria esculenta (Laminariales, Phaeophyceae). IV Inorganic and organic nitrogen in the blade. J Phycol 14:156–160

    CAS  Google Scholar 

  • Buggeln RG (1978b) Physiological investigations on Alaria esculenta (Laminariales, Phaeophyceae) III. Exudation by the blade. J Phycol 14:54–56

    Google Scholar 

  • Chapman AS, Stévant P, Larssen WE (2015) Food or fad? Challenges and opportunities for including seaweeds in a Nordic diet. Bot Mar 58:1–11

    Google Scholar 

  • Cosoveanu A, Axîne O, Iacomi B (2010) Antifungal activity of macroalgae extracts Scientific Papers, University of Agronomic Sciences and Veterinary Medicine of Bucharest Bucharest, Series A, Vol. LIII

  • Coyer JA, Hoarau G, Pearson GA, Serrao EA, Stam WT, Olsen JL (2006) Convergent adaptation to a marginal habitat by homoploid hybrids and polyploidy ecads in the seaweed genus Fucus. Biol Lett 2:405–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuijuan S, Hironao K, Delin D (2005) Effects of blue light on gametophyte development of Laminaria japonica (Laminariales, Phaeophyta). Chin J Ocean Limnol 23:323–329

    Google Scholar 

  • Critchley A, Ohno M (1998) The seaweed resources of the world. Japan International Cooperation Agency, Japan, p 427

  • De La Pylaie AJMB (1824) Quelques observations sur les productions de l’île de Terre-Neuve, et sur quelques algues de la côte de France appartenant au genre Laminaire. Ann Sci Nat 4:174–184

    Google Scholar 

  • De Toni GB (1895) Sylloge algarum omnium hucusque cognitarum. Vol. III. Fucoideae. Vol. 3. Patavii [Padua]: Sumptibus auctoris. pp. [i]-xvi, [1]-638

  • Duarte A (2017) Optimization of seedling production using vegetative gametophytes of Alaria esculenta. MSc thesis, CCMAR, Chile

  • Edelstein T, Craigie JS, McLachlan J (1967) Alaria grandifolia J. Agardh from Nova Scotia. J Phycol 3:3–6

    CAS  PubMed  Google Scholar 

  • Egan B, Garcia-Ezquivel Z, Brinkhuis BH, Yarish C (1990) Genetics of morphology and growth in Laminaria from the North Atlantic Ocean: implications for biogeography. In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marine algae of the North Atlantic. NATO ASI series, Vol. G22. Springer-Verlag, Berlin, pp 147–171

  • Estes JA, Steinberg PD (1988) Predation, herbivory and kelp evolution. Paleobiology 14:19–36

    Google Scholar 

  • Evans LV (1965) Cytological studies in the Laminariales. Ann Bot 29:541–562

    CAS  Google Scholar 

  • FAO (2019) Food and Agriculture Organisation of the United Nations, Fisheries and Aquaculture Department. Dataset Global Aquaculture Production (online query). http://www.fao.org/fishery/statistics/globalaquaculture-Production/en. Accessed 26 Nov 2019

  • Feller-Demalsy MJ, Demalsy P (1974) Recherches sur les Alaria (Phaeophyceae) de l’est Canadian. I. Nombres chromosomiques et identité des Alaria de l’estuaire du St-Laurent. Can J Bot 52:691–694

    Google Scholar 

  • Flavin K, Flavin N, Flahive B (2013) Kelp farming manual a guide to the processes, techniques, and equipment for farming kelp in New England waters. Ocean approved, 130 p

  • Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492

    PubMed  Google Scholar 

  • Garbary DJ, Clarke B (2002) Intraplant variation in nuclear DNA content in Laminaria saccharina and Alaria esculenta (Phaeophyceae). Bot Mar 45:211–216

    CAS  Google Scholar 

  • Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Greville RK (1830) Algae britannicae or descriptions of the marine and other inarticulated plants of the British islands, belonging to the order algae; with plates illustrative of the genera. McLachlan & Stewart, Edinburgh and Baldwin & Cradock, London. pp. [i*-iii*], [i]-lxxxviii, [1]-218, pl. 1-19

  • Guiry MD, Blunden G (1991) Seaweed resources in Europe: uses and potential. John Wiley & Sons, Chichester

    Google Scholar 

  • Guiry MD, Guiry GM (2019) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 16 November 2019

  • Guiry MD, Hession C (1996) Eat up your seaweed! Ireland of the Welcomes 45:22–25

    Google Scholar 

  • Guiry MD (1997) Research and development of a sustainable Irish seaweed industry. Occasional papers in Irish science and technology. No. 14 Went memorial lecture 1996. Royal Dublin Society

  • Han T, Kain (J)JM (1993) Blue light photoreactivation in ultraviolet-irradiated young sporophytes of Alaria esculenta and Laminaria saccharina (Phaeophyta). J Phycol 29:79–81

    CAS  Google Scholar 

  • Han T, Kain (J)JM (1996) Effect of photon irradiance and photoperiod on young sporophytes of four species of the Laminariales. Eur J Phycol 31:233–240

    Google Scholar 

  • Hollohan BT, Dabinett PE, Gow JA (2011) Bacterial succession during biodegradation of the kelp Alaria esculenta (L.) Greville. Can J Microbiol 32:505–512

    Google Scholar 

  • Holdt S, Kraan S (2011) Bioactive compounds in seaweed; functional food applications and legislation. J Appl Phycol 23:543–597

    CAS  Google Scholar 

  • Hotchkiss S (2010) Investigation of the flavouring and taste components of Irish seaweeds (project reference: ILA/07/004) marine research sub-programme (NDP 2007-‘13) series. Marine Instiute, Oranmore, 24 pp

  • Hurd CL, Harrison PJ, Druehl LD (1996) Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystis integrifolia from wave-sheltered and exposed sites. Mar Biol 126:205–214

    CAS  Google Scholar 

  • Hurd CL, Stevens CL (1997) Flow visualization around single and multiple bladed seaweeds with various morphologies. J Phycol 33:360–367

    Google Scholar 

  • Indergaard M, Minsaas J (1991) Animal and human nutrition. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: use and. John Wiley & Sons, Chichester, pp 21–63

    Google Scholar 

  • Inĩguez C, Carmona R, Lorenzo MR, Niell X, Wiencke C, Gordillo FJL (2015) Increased CO2 modifies the carbon balance and the photosynthetic yield of two common Arctic brown seaweeds: Desmarestia aculeata and Alaria esculenta. Polar Biol 39:1979–1991

  • Jensen A, Nebb H, Sæter EA (1968) The value of Norwegian seaweed meal as a mineral supplement for dairy cows. Norwegian Institute of Seaweed Research, TAPIR. Report 32, pp 1–35

  • Jónsson H (1904) The marine algae of East Greenland. Meddel Grønl 30:1–73

    Google Scholar 

  • Kain (Jones) JM (1991) Cultivation of attached seaweeds. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: use and potential. John Wiley & Sons, Chichester, pp 309–377

  • Kain JM, Dawes CP (1987) Useful European seaweeds: past hopes and present cultivation. Hydrobiologia 151:173–181

    Google Scholar 

  • Kain JM, Holt TJ, Dawes CP (1990) European Laminariales and their cultivation. In: Yarish C, Penniman CA, van Patten P (eds) Economically important marine plants of the Atlantic: their biology and cultivation. Connecticut Sea Grant College Program, Groton, pp 1–158

  • Kusumo HT, Druehl LD (2000) Variability over space and time in the genetic structure of the winged kelp Alaria marginata. Mar Biol 136:397–409

    CAS  Google Scholar 

  • Kapraun DF (2005) Nuclear DNA content estimates in multicellular eukaryotic green, red and brown algae: phylogenetic considerations. Ann Bot 95:7–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasahara K (1973) The development of the mucilage gland of two Japanese species of Alaria. Bot Mag Tokyo 86:169–181

    Google Scholar 

  • Kjellman FR (1877) Om Spetsbergens marina. Klorofyllförande Thallophyter II Bihang K Svensk Vet-Akad Hand 4:1–61

    Google Scholar 

  • Kjellman FR (1883) The algae of the Arctic Sea. K Svensk Vet-Akad Handl 20:1–350

    Google Scholar 

  • Kjellman FR (1906) Zur Kenntniss der marinen Algen-flora von Jan Mayen. Arch Bot 5:1–30

    Google Scholar 

  • Klimova AV, Klochkova TA (2014). Development of gametophytes of laminariacean algae Alaria marginata from the Avacha bay (southeast Kamchatka) under laboratory-controlled conditions. Research aquatic biological resources of Kamchatka and northwestern Pacific , вып. 35:48–55 (in Russian)

  • Klimova AV, Klochkova TA (2017) Peculiarities of development in the marine brown alga Alaria angusta Kjellman, 1889 (Alariaceae: Ochrophyta) under laboratory-controlled conditions. Russ J Mar Biol 43:42–48

    Google Scholar 

  • Klimova AV, Klochkova TA, Klochkova NG (2018a) Infraspecies forms of Alaria esculenta (Laminariales, Ochrophyta) in the marine flora of eastern Kamchatka: first revision. ВЕСТНИК КамчатГТУ 43:74 (In Russian)

    Google Scholar 

  • Klimova AV, Klochkova TA, Klochkova NG (2018b) Lectotypification of some formae of Alaria esculenta (Linnaeus) Greville (Phaeophyceae, Alariaceae) described in Postels and Ruprecht’s Illustrationes algarum. Notulae Algarum 84:

  • Kraan S, Guiry MD (1999) Growing a new sustainable sea-vegetable in Ireland. The Irish Scientists Yearbook 7:128

    Google Scholar 

  • Kraan S, Guiry MD (2000) Sexual hybridization experiments and phylogenetic relationships as inferred from Rubisco spacer sequences in the genus Alaria (Alariaceae, Phaeophyceae). J Phycol 35:190–198

    Google Scholar 

  • Kraan S, Verges Tramullas A, Guiry MD (2000) The edible brown seaweed Alaria esculenta (Phaeophyceae, Laminariales): hybridisation, growth and genetic comparisons of six Irish populations. J Appl Phycol 12:577–583

  • Kraan S, Guiry MD (2001a) Molecular and morphological character inheritance in hybrids of Alaria esculenta and A. praelonga (Alariaceae, Phaeophyceae). Phycologia 39:554–559

    Google Scholar 

  • Kraan S, Rueness J, Guiry MD (2001) Are North Atlantic Alaria esculenta and A. grandifolia (Alariaceae, Phaeophyceae) conspecific? Eur J Phycol 36:35–42

    Google Scholar 

  • Kraan S, Guiry MD (2001b) Phase II: strain hybridisation field experiments and genetic fingerprinting of the edible brown seaweed Alaria esculenta. Marine Resource Series. No 18. pp 1–33

  • Kraan S (2013a) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strat Global Change 18:27–46

    Google Scholar 

  • Kraan S (2013b) Pigments and minor compounds in algae. In: Dominquez H (ed) Functional food ingredients from algae for foods and nutraceuticals Woodhead Publishing Ltd, Oxford pp 205-251

  • Kraan S (2017) G. Undaria marching on; late arrival in the Republic of Ireland. J Appl Phycol 29:1107–1114

  • Kucera HK, Saunders GW (2008) Assigning morphological variants of Fucus (Fucales, Phaeophyceae) in Canadian waters to recognized species using DNA barcoding. Botany 86:1065–1079

    CAS  Google Scholar 

  • Küpper FC, Schweigert N, Ar Gall E, Legendre J-M, Vilter H, Kloareg B (1998) Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 207:163–171

    Google Scholar 

  • Lane CE, Lindstrom SC, Saunders GW (2007) A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol Phylog Evol 44:634–648

  • Laycock M (1975) The amino acid sequence of cytochrome-f from brown alga Alaria esculenta (L.) Grev. Biochem J 149:271–279

  • Le Gouard D (1999) Nutritional analysis on seaweeds. The National Food Centre, Castleknock, Dublin, Ireland, 27 pp

    Google Scholar 

  • Levring T, Hoppe HA, Schmid OJ (1969) Marine algae: a survey of research and utilization. Cram, De Gruyter & Co., Hamburg

  • Lewallen E, Lewallen J (1996) Sea vegetable gourmet cookbook and Wildcrafter’s guide. Mendocino Sea Vegetable Company, CA, USA

    Google Scholar 

  • Lewis RJ, Jiang BY, Neushul M, Fei XG (1993) Haploid parthenogenetic sporophytes of Laminaria japonica (Phaeophyceae). J Phycol 29:363–369

    Google Scholar 

  • Lewis JL (1996) Chromosomes of the brown algae. Phycologia 35:19–40

    Google Scholar 

  • Li F, Tian TC, Shi YC (1995) Study on antivirus effect of fucoidan in vitro. J Norman Bethune Univ Med Sci 21:255–257

    CAS  Google Scholar 

  • Lichtenberg M, Nørregaard RD, Kühl M (2017) Diffusion or advection? Mass transfer and complex boundary layer landscapes of the brown alga Fucus vesiculosus. J R Soc Interface 14:20161015

    PubMed  PubMed Central  Google Scholar 

  • Linnaeus C (1767) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus & differentiis. Tomus II. Editio duodecima, reformata. pp. 533-1327 [1328] [+ 1-36]. Homiae [Stockholm]: impensis direct. Laurentii Salvii

  • Lunde G (1970) Analysis of trace elements in seaweed. J Sci Food and Agri 21:416–418

    CAS  Google Scholar 

  • Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Lüning K (2008) Temperature tolerance of Northeast Pacific marine algae. J Phycol 24:310–315

    Google Scholar 

  • Lüning K, and Müller DG (1978) Chemical interaction in sexual reproduction of several Laminariales (Phaeophyceae) release and attraction of spermatozoids. Z Pflanz Physiol 89: 333–341

  • Mabeau S, Fleurence J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4:103–107

    CAS  Google Scholar 

  • Major A (1977) The book of seaweed. Gordon & Cremonesi Publ., London, 234 pp

  • McDevit DC, Saunders GW (2009) On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protocol. Phycol Res 57:131–141

    CAS  Google Scholar 

  • Mai K, Mercer JP, Donlon J (1996) Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L and Haliotis discus hannai Ino. The role of polyunsaturated fatty acids of macroalgae in abelone nutrition. Aquaculture 139:77–89

  • Maier I, Hertweck C, Boland W (2001) Stereochemical specificity of lamoxirene, the sperm-releasing pheromone in kelp (Laminariales, Phaeophyceae). Biol Bull 201:121–125

    CAS  PubMed  Google Scholar 

  • Maehre HK, Malde MK, Eilertsen K-E, Elvevoll EO (2014) Characterization ofprotein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J Sci Food Agric 94:3281–3290

    CAS  PubMed  Google Scholar 

  • MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65(12), 535-08

  • Makarov VN, Makarov MV, Schoschina EV (1999) Seasonal dynamics of growth in the Barents Sea seaweeds: endogenous and exogenous regulation. Bot Mar 42:43–49

    Google Scholar 

  • Miyabe K, Nagai M (1932) Pleuropterum paradiseum, a new genus and species of Alarieae from the northern Kuriles. Proceedings of the Imperial Academy of Japan, Tokyo 8:127–130

    Google Scholar 

  • Moreda-Piñeiro J, Alonso-Rodríguez E, López-Mahia P, Muniategui-Lorenzo S, Prada-Rodríguez D, Moreda-Piñeiro A, Bermejo-Barrera P (2007) Development of a new sample pre-treatment procedure based on pressurized liquid extraction for the determination of metals in edible seaweed. Anal Chem Acta 598:95–102

    Google Scholar 

  • Morrissey J, Kraan S, Guiry MD (2000) Identification, location and uses of commercially important seaweeds on the Irish coast. B.I.M. publication series, Dublin, Ireland

    Google Scholar 

  • Moss SM (1994) Growth rates, nucleic acid concentrations, and RNA/DNA ratios of juvenile white shrimp, Penaeus vannamei Boone, fed different algal diets. J Exp Mar Biol Ecol 182:193–204

    Google Scholar 

  • Müller DG, Maier I, Gassmann G (1985) Survey on sexual pheromone specifity in Laminariales (Phaeophyceae). Phycologia 24:475–477

    Google Scholar 

  • Munda IM, Lüning K (1977) Growth performance of Alaria esculenta off Helgoland. Helgol Wiss Meeresunters 29:311–314

    Google Scholar 

  • Murúa P, Küpper FC, Muñoz LA, Bernard M, Peters AF (2018) Microspongium alariae in Alaria esculenta: a widely-distributed non-parasitic brown algal endophyte that shows cell modifications within its host. Bot Mar 61:343–354

    Google Scholar 

  • Nakagawa H, Umino T, Tasaka Y (1997) Usefulness of Ascophyllum meal as a feed additive for red sea bream, Pagrus major. Aquaculture 151:275–281

    Google Scholar 

  • Nakahara H, Nakamura Y (1973) Parthenogenesis, apogamy and apospory in Alaria crassifolia (Laminariales). Mar Biol 18:327–332

    Google Scholar 

  • Nitschke U, Stengel DB (2016) Quantification of iodine loss in edible Irish seaweeds during processing. J Appl Phycol 28:3527–3533

    Google Scholar 

  • Newton L (1931) A handbook of the British seaweeds. British Museum (Nat. Hist.), London

  • Nisizawa K (2002) Seaweed Kaiso; Bountiful harvest from the seas, sustenance for health and well-being by preventing common lifestyle related diseases. Japan Seaweed Association, Kochi 106 pp.

  • Norton TA, Mathieson A, Neushul AC (1982) A review of some aspects of form and function in seaweeds. Bot Mar 25:501–510

    Google Scholar 

  • Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ (2011) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 126:1006–1012

    CAS  Google Scholar 

  • Park J, Kim JK, Kong J, Depuydt S, Brown MT, Han T (2017) Implications of rising temperatures for gametophyte performance of two kelp species from Arctic waters. Bot Mar 60:39–48

    Google Scholar 

  • Pereira L (2018) Seaweeds as source of bioactive substances and skin care therapy—cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 5:68

    CAS  Google Scholar 

  • Pétursdóttir ÁH, Blagden J, Gunnarsson K, Raab A, Stengel DB, Feldmann J, Gunnlaugsdóttir H (2019) Arsenolipids are not uniformly distributed within two brown macroalgal species Saccharina latissima and Alaria esculenta. Anal Bioanal Chem 411:4973–4985

    PubMed  PubMed Central  Google Scholar 

  • Pfister CA (1991) Reproductive plasticity in the kelp Alaria nana (Phaeophyceae). J Phycol 27:763–766

    Google Scholar 

  • Pfister CA (1992) Costs of reproduction in an intertidal kelp: patterns of allocation and life history consequences. Ecology 73:1586–1596

    Google Scholar 

  • Postels A., Ruprecht F (1840) Illustrationes Algarum. Vol 4 & 6, St. Petersburg

  • Prabhasankar P, Ganesan P, Bhaskar N, Hirose A, Nimishmol S, Gowda P, Hosokawa RM, Miyashita K (2009) Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: chemical, functional and structural evaluation. Food Chem 115:501–508

    CAS  Google Scholar 

  • Printz H (1926) Die algenvegetation des Trondhjemsfjordes. Skrifter Utgitt Av Det Norske Videnskaps-Akademi, Oslo. 1. Matem. -Naturvid. Klasse No.5. 273 pp

  • Reid GK, Chopin T, Robinson SMC, Azevedo P, Quinton M, Belyea E (2013) Weight ratios of the kelps, Alaria esculenta and Saccharina latissima, required to sequester dissolved inorganic nutrients and supply oxygen for Atlantic salmon, Salmo salar, in integrated multi-trophic aquaculture systems. Aquaculture 408-409:34–46

    Google Scholar 

  • Reis PA, Goncalvesa J, Abreu H, Pereira R, Benoit M, O’Mahonye F, Connellan I, Maguire J, Ozório R (2016) Seaweed Alaria esculenta as a biomonitor species of metal contamination in Aughinish Bay (Ireland). Ecol Indic 69:19–25

    CAS  Google Scholar 

  • Robinson GGC, Cole K (1971) Cytological investigations of some north American species of the genus Alaria Greville. Bot Mar 14:59–62

  • Romarís-Hortas V, García-Sartal C, Barciela-Alonso M del C, Domínguez-González R, Moreda-Piñeiro A, Bermejo-Barrera P (2011) Bioavailability study using an in­ vitro method of iodine and bromine in edible seaweed. Food Chem 124, 1747–1752

  • Rosenvinge KL (1893) Grønlands havalger. Meddel Grønl 3:765–981

    Google Scholar 

  • Roleda MY, Skjermo J, Marfaing H, Jónsdóttir R, Rebours C, Gietl A, Stengel DB, Nitschke U (2018) Iodine content in bulk biomass of wild-harvested and cultivated edible seaweeds: inherent variations determine species-specific daily allowable consumption. Food Chem 254:333–339

    CAS  PubMed  Google Scholar 

  • Rosell K-G, Srivastava LM (1984) Seasonal variation in the chemical constituents of the brown algae Macrocystis integrifolia and Nereocystis luetkeana. Hydrobiologia 151:471–475

    Google Scholar 

  • Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26

    Google Scholar 

  • Ruprecht FJ (1850) Algae ochotenses. Die ersten sicheren Nachrichten über die Tange des Ochotskischen Meeres. St. Petersburg, Russia, 243 pp

    Google Scholar 

  • Sauvageau M (1916) Sur les glandes a mucilage de certaines Laminaires. C R Acad Sci Paris 162:921–924

  • Saunders GW, Druehl LD (1992) Nucleotide sequences of the small-subunit ribosomal RNA genes from selected Laminariales (Phaeophyta): implications for kelp evolution. J Phycol 28:544–549

    CAS  Google Scholar 

  • Saunders GW, Druehl LD (1993) Nucleotide sequence of the internal transcribed spacers and 5.8S rRNA genes from Alaria marginata and Postelsia palmaeformis (Phaeophyta; Laminariales). Mar Biol 115:347–352

  • Selivanova ON, Zhigadlova GG (1997) Marine alga of the Commander Islands. Preliminary remarks on the revision of the flora II. Phaeophyta. Bot Mar 40:9–13

    Google Scholar 

  • Setchell WA, Gardner NL (1925) The marine algae of the Pacific coast of North America. Part 3. Melanophyceae. Univ Calif Publ Bot 8:383–898

    Google Scholar 

  • Singh RP, Reddy CRK (2014) Seaweed–microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol Ecol 88:213–230

    CAS  PubMed  Google Scholar 

  • Schiener P, Black KD, Stanley MS, Green DH (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27:363–373

    CAS  Google Scholar 

  • Shannon E, Abu-ghannam N (2016) Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. J Appl Phycol 29:1027–1036

    Google Scholar 

  • Silva PC (1952) A review of nomenclatural conservation in the algae from the point of view of the type method. Univ Calif Publ Bot 25:241–324

    Google Scholar 

  • South GR (1970a) Experimental culture of Alaria in a sub-arctic, free-flowing sea water system. Helgol Wiss Meeresunters 20:216–228

    Google Scholar 

  • Sørensen LE, Jeppesen PB, Christiansen CB, Hermansen K, Gregersen S (2019) Nordic seaweed and diabetes prevention: exploratory studies in KK-Ay mice. Nutrients 11:1435

    PubMed Central  Google Scholar 

  • South GR (1983) A checklist of marine algae of eastern Canada, second revision. Can J Bot 62:680–704

    Google Scholar 

  • Stackhouse J (1809) Tentamen marino-cryptogamicum, ordinem novum; in genera et species distributum in Classe XXIV ta Linnaei sistens. Mém. Soc. Imp. Nat. Moscou 2. 50-97 page(s): 53

  • Stam WT, Bot PVM, Boele-Bos SA, van Rooij JM, van den Hoek C (1988) Single-copy DNA-DNA hybridization among five species of Laminaria (Phaeophyceae): phylogenetic and biogeographic implications. Helgol Meeresunters 42:251–257

    Google Scholar 

  • Stévant P, Marfaing H, Duinker A, Fleurence J, Rustad T, Sandbakken I, Chapman A (2017) Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption. J Appl Phycol 30:2047–2060

    Google Scholar 

  • Stuart MD, Brown MT (1994) Growth and diet of cultivated black-footed abalone, Haliotis iris (Martyn). Aquaculture 127:329–337

    Google Scholar 

  • Sundene O (1962) The implications of transplant and culture experiments on the growth and distribution of Alaria esculenta. Nytt Mag Bot 9:155–174

    Google Scholar 

  • Taylor WR (1957) Marine algae of the northeastern coast of North America. Univ Michigan Press, Ann Arbor, 2nd ed 509 pp.

  • Taylor VF, Jackson BP (2016) Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere 163:6–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • The Seaweed Company (2020) https://www.theseaweedcompany.com/ Accessed 26 Jan 2020

  • Teas J, Pino S, Critchley A, Braverman LE (2004) Variability of iodine content in common commercially available edible seaweeds. Thyroid 14:836–841

    CAS  PubMed  Google Scholar 

  • Teas J, Braverman LE, Kurzer MS, Pino S, Hurley TG, Hebert JR (2007) Seaweed and soy: companion foods in Asian cuisine and their effects on thyroid function in American Women. J Med Food 10:90–100

    CAS  PubMed  Google Scholar 

  • Tokida J, Ohmi H, Imashima M (1958) A Chimaera of Alaria and Laminaria found in nature. Nature 181:923–924

  • tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridisation experiments and temperature responses. Phycologia 31:147–163

    Google Scholar 

  • tom Dieck I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264

    Google Scholar 

  • Usov AI, Smirnova GP, Klochkovab NG (2005) The polysaccharide composition of the Pacific brown alga Alaria fistulosa P. et R. (Alariaceae, Laminariales). Russ Chem Bull 54:1282–1286

  • van den Hoek C (1987) The possible significance of long-range dispersal for the biogeography of seaweeds. Helgol Meeresunters 41:261–272

    Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Verdy C, Branka J-E, Mekideche N (2011) Quantitative assessment of lactate and progerin production in normal human cutaneous cells during normal ageing: effect of an Alaria esculenta extract. Int J Cosmet Sci 33:462–466

    CAS  PubMed  Google Scholar 

  • Vinogradova KL (1995) The checklist of the marine algae from Spitsbergen. Bot Zhr SSSR 80:50–61

    Google Scholar 

  • Verdy C, Branka J-E, Mekideche N (2012) Melanosome transfer evaluation by quantitative measurement of Pmel 17 in human normal melanocyte–keratinocyte co-cultures: effect of an Alaria esculenta extract. J Cosmet Sci 63:197–203

    CAS  PubMed  Google Scholar 

  • Walls AM, Edwards MD, Firth LB, Johnson MP (2017) Successional changes of epibiont fouling communities of the cultivated kelp Alaria esculenta: predictability and influences. Aquacult Environ Interact 9:55–69

    Google Scholar 

  • Walsh M, Watson L (2011) A market analysis toward the further development of seaweed aquaculture in Ireland. BIM. 49pp

  • Widdowson TB (1971a) A taxonomic revision of the genus Alaria Greville. Syesis 4:11–49

    Google Scholar 

  • Widdowson TB (1971b) A statistical analysis of variation in the brown alga Alaria. Syesis 4:125–143

    Google Scholar 

  • Wiencke C, Lüdera UH, Roleda MY (2007) Impact of ultraviolet radiation on physiology and development of zoospores of the brown alga Alaria esculenta from Spitsbergen. Physiol Plant 130:601–612

    CAS  Google Scholar 

  • WoRMS Editorial Board (2020) World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 8 June 2020. https://doi.org/10.14284/170

  • Wu CY (1998) The seaweed resources of China. In: Critchley AT, Ohno M (eds) Seaweed resources of the world. JICA, Yokosuka, Japan pp 34–46

  • Yaby H (1957) Nuclear division in sporangium of Alaria crassifolia Kjellm. Bull Fac Fish Hokkaido Univ 8:185–189

    Google Scholar 

  • Yabu H (1964) Early development of several species of Laminariales in Hokkaido. Mem Fac Fish Hokkaido Univ 12, 1-54

  • Yendo K (1919) A monograph of the genus Alaria. J Coll Sci Tokyo Imp Univ 153:1–145

    Google Scholar 

  • Yone Y, Furuichi M, Urano K (1986) Effects of dietary wakame Undaria pinnatifida and Ascophyllum nodosum supplements on growth, feed efficiency, and proximate composition of liver and muscle of the red sea bream. Nippon Suisan Gakk 52:1465–1488

    Google Scholar 

  • Yoon HS, Boo SM (1999) Phylogeny of Alariaceae (Phaeophyta) with special reference to Undaria based on sequences of the RuBisCo spacer region. Hydrobiologia 398:47–55

    Google Scholar 

  • Zacher K, Bernard M, Moreno AD, Bartsch I (2019) Temperature mediates the outcome of species interactions in early life-history stages of two sympatric kelp species. Mar Biol 166:161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kraan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraan, S. Concise review of the genus Alaria Greville, 1830. J Appl Phycol 32, 3543–3560 (2020). https://doi.org/10.1007/s10811-020-02222-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02222-0

Keywords

Navigation