Skip to main content
Log in

Performance of the estuarine alga Punctaria latifolia (Phaeophyceae) under different abiotic culture conditions

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In farming projects, environmental variations can affect growth, productivity, survival, and fertility, as well as the quality of the produced biomass. This is why estuarine algae could be a good alternative for developing aquaculture ventures in a global climate change scenario since they can develop in highly fluctuating environments with large temperature and salinity fluctuations and low light penetrability. In this study, the best culture conditions (i.e., temperature; nutrients with Provasoli culture medium (PES) and PES + Kelpak®, a commercial biostimulant based on algae; salinity and photon flux) for the growth and fertility of gametophytes and sporophytes of the estuarine alga Punctaria latifolia were evaluated. Gametophytes and sporophytes of P. latifolia showed good tolerance to a wide range of abiotic variables. Under culture conditions, both stages presented the highest growth at intermediate to high temperatures (16—20 °C) and intermediate to high salinity (27.5 – 35 psu). However, gametophytes grew better at intermediate to high nutrient concentrations of PES and PES + Kelpak® and low and high light intensity (5—35 µmol photons m−2 s−1), whereas sporophytes grew better at intermediate to low nutrients of PES and PES + Kelpak® and low light intensity (5 µmol photons m−2 s−1). Punctaria latifolia would be a potentially cultivable alternative due to its broad tolerance to unfavorable environmental conditions in the climatic change we face.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, for any investigator who requires it.

References

  • Agrawal SC (2012) Factors controlling induction of reproduction in algae-review: The text. Folia Microbiol (Praha) 57:387–407

    Article  CAS  PubMed  Google Scholar 

  • Amsler CD, Neushul M (1989) Chemotactic effects of nutrients on spores of the kelps Macrocystis pyrifera and Pterygophora californica. Mar Biol 102:557–564

    Article  CAS  Google Scholar 

  • Amsler CD, Fairhead VA (2005) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91

    Article  Google Scholar 

  • Angeletti S, Cervellini PM (2015) Population structure of the burrowing crab Neohelice granulata (Brachyura, Varunidae) in a southwestern Atlantic salt marsh. Lat Am J Aquat Res 43:539–547

    Article  Google Scholar 

  • Arioli T, Mattner SW, Winberg PC (2015) Applications of seaweed extracts in Australian agriculture: past, present and future. J Appl Phycol 27:2007–2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Asensi AO, Küpper FC (2012) Seasonal periodicity and reproduction of brown algae (Phaeophyceae) at Puerto Deseado (Patagonia). Bot Mar 55: 217–228

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bilan MI, Smirnova GP, Shashkov AS, Usov AI (2014a) Polysaccharides of algae 65. Unusual polysaccharide composition of the pacific brown alga Punctaria plantaginea. Russ Chem Bull 63:522–528

    Article  CAS  Google Scholar 

  • Bilan MI, Shashkov AS, Usov AI (2014b) Structure of a sulfated xylofucan from the brown alga Punctaria plantaginea. Carbohyd Res 393:1–8

    Article  CAS  Google Scholar 

  • Boderskov T, Rasmussen MB, Cassard CH, Svensgaard J, Enevoldsen LN, Bruhn A (2022) Comparing effects of nutrient sources approved for organic seaweed production on hatchery stage development of sugar kelp Saccharina latissima. Algal Res 61:102602

    Article  Google Scholar 

  • Bogaert K, Beeckman T, De Clerck O (2016) Abiotic regulation of growth and fertility in the sporophyte of Dictyota dichotoma (Hudson) J.V. Lamouroux (Dictyotales, Phaeophyceae). J Appl Phycol 28:2915–2924

    Article  CAS  Google Scholar 

  • Borburema HDDS, Lima RPD, Miranda GECD (2021) Effects of ocean warming, eutrophication and salinity variations on the growth of habitat-forming macroalgae in estuarine environments. Acta Bot Bras 34:662–672

    Article  Google Scholar 

  • Brawley SH, Johnson LE (1992) Gametogenesis, gametes and zygotes: An ecological perspective on sexual reproduction in the algae. Br Phycol J 27:233–252

    Article  Google Scholar 

  • Briceño-Domínguez D, Hernández-Carmona G, Moyo M, Stirk W, van Staden J (2014) Plant growth promoting activity of seaweed liquid extracts produced from Macrocystis pyrifera under different pH and temperature conditions. J Appl Phycol 26:2203–2210

    Article  Google Scholar 

  • Cai J, Lovatelli A, Aguilar-Manjarrez J, Cornish L, Dabbadie L, Desrochers A, Diffey S, Garrido GE, Geehan J, Hurtado A, Lucente D, Mair G, Miao W, Potin P, Przybyla C. Reantaso Melba, Roubach R, Tauati M, Yuan X (2021) Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular, no 1229. FAO, Rome

  • Campbell I, Macleod A, Sahlmann C, Neves L, Funderud J, Øverland M, Hughes AD, Stanley M (2019) The environmental risks associated with the development of seaweed farming in Europe - Prioritizing key knowledge gaps. Front Mar Sci 6:107

    Article  Google Scholar 

  • Camus C, Buschmann AH (2017) Macrocystis pyrifera aquafarming: Production optimization of rope-seeded juvenile sporophytes. Aquaculture 468:107–114

    Article  Google Scholar 

  • Capelli de Steffens A, Campo de Ferreras A (2004) Climatología. In: Piccolo MC and Hoffmeyer MS (eds) Ecosistema del Estuario de Bahía Blanca. Instituto Argentino de Oceanografía, Bahía Blanca, pp 79–90

  • Carney LT, Edwards MS (2006) Cryptic processes in the sea: a review of delayed development in the microscopic life stages of marine macroalgae. Algae 21:161–168

    Article  Google Scholar 

  • Celleri C, Zapperi G, González Trilla G, Pratolongo P (2018) Spatial and temporal patterns of rainfall variability and its relationship with land surface phenology in central east Argentina. Int J Climatol 38:3963–3975

    Article  Google Scholar 

  • Clayton MN, Ducker SC (1970) The life history of Punctaria latifolia Greville (Phaeophyta) in southern Australia. Aust J Bot 18:293–300

    Article  Google Scholar 

  • Croce ME, Gauna MC, Fernández C, Poza AM, Parodi ER (2021) Biology and ecology of the benthic algae. In: Fiori SM, Pratolongo PD (eds) The Bahía Blanca Estuary. Springer, Cham, pp 113–151

    Chapter  Google Scholar 

  • De Wreede RE, Klinger T (1988) Reproductive strategies in algae. In: Doust JL, Doust LL (eds) Plant reproductive ecology: patterns and strategies. Oxford University Press, Oxford, pp 267–284

    Google Scholar 

  • Diehl N, Karsten U, Bischof K (2020) Impacts of combined temperature and salinity stress on the endemic Arctic brown seaweed Laminaria solidungula J Agardh. Polar Biol 43:647–656

    Article  Google Scholar 

  • Ducrotoy JP, Michael E, Cutts ND, Franco A, Little S, Mazik K, Wilkinson M (2019) Temperate estuaries: their ecology under future environmental changes. In: Wolanski E, Day JW, Elliott M, Ramachandran R (eds) Coasts and Estuaries. Elsevier, NY, pp 577–659

    Chapter  Google Scholar 

  • FAO (2022) The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. FAO, Rome

  • Fonselius S, Valderrama J (2003) One hundred years of hydrographic measurements in the Baltic Sea. J Sea Res 49:229–241

    Article  Google Scholar 

  • Forbord S, Steinhovden KB, Rød KK, Handå A, Skjermo J (2018) Cultivation protocol for Saccharina latissima. In: Charrier B, Wichard T, Reddy CRK (eds) Protocols for macroalgae research. CRC Press, Boca Raton, pp 38–50

    Google Scholar 

  • Freije RH, Marcovecchio JE (2004) Oceanografía química del estuario de Bahía Blanca. In: Piccolo MC, Hoffmeyer MS (eds) El ecosistema del estuario de Bahía Blanca. Instituto Argentino de Oceanografía (IADO–CONICET/UNS), Bahía Blanca (Argentina), pp 69–78

  • Freije RH, Spetter CV, Marcovecchio JE, Popovich CA, Botté SE, Negrín V, Arias A, Delucchi F, Asteasuain RO (2008) Water chemistry and nutrients of the Bahía Blanca Estuary. In: Nieves RJ, Baretta J, Mateus MD (eds) Perspectives on integrated coastal zone management in South America. IST Press, Lisbon, pp 243–256

    Google Scholar 

  • Gauna MC, Croce ME, Fernández C (2013) Seaweeds ecology and climate change. In: Arias AH, Menéndez MC (eds) Marine Ecology in a Changing World. CRC Press, Boca Raton, pp 165–193

    Google Scholar 

  • Gauna C, Parodi ER (2010) Life cycle of Punctaria latifolia (Chordariaceae, Phaeophyceae) from the coast of Buenos Aires Province, South America. Algol Stud 134:55–66

    Article  Google Scholar 

  • Grand View Research (2022) Market research report. Commercial seaweed market size, share & trends analysis report by product (brown, red, green), by application (human consumption, animal feed, agriculture), by form (leaf, powdered, flakes), by region, and segment forecasts, 2022 - 2030. https://www.grandviewresearch.com/industry-analysis/commercial-seaweed-market; accessed 10 September 2023

  • Guiry MD, Guiry GM (2022) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; accessed 5 March 2023

  • Ji Y, Gao K (2021) Effects of climate change factors on marine macroalgae: A review. Adv Mar Biol 88:91–136

    Article  PubMed  Google Scholar 

  • Hughes JS, Otto SP (1999) Ecology and the evolution of biphasic life cycles. Am Nat 154:306–320

    Article  PubMed  Google Scholar 

  • Hurd CL, Wright JT, Layton C, Strain EM, Britton D, Visch W, Barrett N, Bennett S, Lee Chang KJ, Edgar G, Fitton JH, Greeno D, Jameson I, Johnson CR, Karpiniec SS, Kraft GT, Ling SD, Macleod CM, Paine ER, Park A, Sanderson JC, Schmid M, Scott FJ, Shelamoff V, Stringer DN, Tatsumi M, White CA, Willis A (2023) From Tasmania to the world: long and strong traditions in seaweed use, research, and development. Bot Mar 66: 1–36

  • Hurtado AQ, Critchley AT (2020) Time for applications of biostimulants in phyconomy: Seaweed extracts for enhanced cultivation of seaweeds (SEECS). In: Torres MD, Kraan S, Dominguez H (eds) Sustainable Seaweed Technologies. Elsevier, Amsterdam, pp 103–127

    Chapter  Google Scholar 

  • Hurtado AQ, Joe M, Sanares RC, Fan D, Prithiviraj B, Critchley AT (2012) Investigation of the application of Acadian Marine Plant Extract Powder (AMPEP) to enhance the growth, phenolic content, free radical scavenging, and iron chelating activities of Kappaphycus Doty (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 24:601–611

  • Karsten U (2012) Seaweed acclimation to salinity and desiccation stress. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin, pp 87–107

    Chapter  Google Scholar 

  • Kennish MJ (2001) Benthic communities of the barnegat bay - little egg harbor estuary linked references are available on JSTOR for this article : Benthic communities of the Barnegat Bay-Little Egg Harbor Estuary. Coast Educ Res Found Inc 32:167–177

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Krueger-Hadfield SA (2020) What’s ploidy got to do with it? Understanding the evolutionary ecology of macroalgal invasions necessitates incorporating life cycle complexity. Evol Appl 13:486–499

    Article  PubMed  Google Scholar 

  • Larsen A, Sand-Jensen K (2006) Salt tolerance and distribution of estuarine benthic macroalgae in the Kattegat-Baltic Sea area. Phycologia 45:13–23

    Article  Google Scholar 

  • Leonard LA, Luther ME (1995) Flow hydrodynamics in tidal marsh canopies. Limnol Oceanogr 40:1474–1484

    Article  ADS  Google Scholar 

  • Lin A, Shen S, Wang J, Yan B (2008) Reproduction diversity of Enteromorpha prolifera. J Integr Plant Biol 50:622–629

    Article  PubMed  Google Scholar 

  • Lind AC, Konar B (2017) Effects of abiotic stressors on kelp early life-history stages. Algae 32:223–233

    Article  CAS  Google Scholar 

  • Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE, Troell M (2021) A 20-year retrospective review of global aquaculture. Nature 591:551–563

    Article  ADS  CAS  PubMed  Google Scholar 

  • Negrin VL, Spetter CV, Asteasuain RO, Perillo GM, Marcovecchio JE (2011) Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh. J Environ Sci 23:212–221

    Article  CAS  Google Scholar 

  • Oliveira EC, Paula EJ, Plastino EM, Petti R (1995) Metodologías para cultivo no axénico de marcroalgas marinas in vitro. In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de Métodos Ficológicos. Universidad de Concepción, Concepción, pp 430–447

    Google Scholar 

  • Perillo GME (2019) Geomorphology of tidal courses and depressions. In: Perillo GME, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 221–261

  • Poza AM, Gauna MC, Escobar JF, Parodi ER (2017) Heteromorphic phases of Leathesia marina (Ectocarpales, Ochrophyta) over time from northern Patagonia, Argentina. Phycologia 56:579–589

    Article  Google Scholar 

  • Poza AM, Fernández C, Gauna MC, Parodi ER (2018) Biochemical properties and culture optimization of Leathesia marina (Phaeophyceae). Algal Res 33:379–388

    Article  Google Scholar 

  • Poza AM, Fernández C, Latour EA, Raffo MP, Delatorre FG, Parodi ER, Gauna MC (2022) Optimization of the rope seeding method and biochemical characterization of the brown seaweed Asperococcus ensiformis. Algal Res 64:102668

    Article  Google Scholar 

  • Pratolongo P, Kirby J, Plater A, Brinson M (2009) Temperate coastal wetlands: morphology, sediment processes, and plant communities. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, Amsterdam, pp 185–210

    Google Scholar 

  • Pratolongo PD, Perillo GM, Piccolo MC (2010) Combined effects of waves and plants on a mud deposition event at a mudflat-salt marsh edge in the Bahía Blanca estuary. Estuar Coast Shelf Sci 87:207–212

    Article  ADS  Google Scholar 

  • Pratolongo P, Leonardi N, Kirby JR, Plater A (2019) Temperate coastal wetlands: morphology, sediment processes, and plant communities. In: Perillo GME, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal Wetlands, 2nd edn. Elsevier, Amsterdam, pp 105–152

    Chapter  Google Scholar 

  • Provasoli L (1968) Media and prospect for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collection of algae. Proc USA Japan Conf, Hakone, Sept. 1966. Jap Soc Plant Physiol, Tokyo pp 63–75

  • Redmond S, Green L, Yarish C, Kim J, Neefus C (2014) New England Seaweed Culture Handbook-Nursery Systems. Connect Sea Grant CTSG-14–01 http://seagrant.uconn.edu/publications/aquaculture/handbook.pdf

  • Robertson-Andersson DV, Leitao D, Bolton JJ, Anderson RJ, Njobeni A, Ruck K (2006) Can kelp extract (KELPAK®) be useful in seaweed mariculture? J Appl Phycol 18:315–321

    Article  Google Scholar 

  • Roleda MY (2006) Effects of ultraviolet radiation on early life stages of cold temperate and Arctic macroalgae: implications for recruitment and vertical depth distribution. Ber Polar Meeresforsch 52:61–176

    Google Scholar 

  • Souza JMC, Castro JZ, Critchley AT, Yokoya NS (2018) Physiological responses of the red algae Gracilaria caudata (Gracilariales) and Laurencia catarinensis (Ceramiales) following treatment with a commercial extract of the brown alga Ascophyllum nodosum (AMPEP). J Appl Phycol 31:1883–1888

    Article  Google Scholar 

  • Suebsanguan S, Strain EMA, Morris RL, Swearer SE (2021) Optimizing the initial cultivation stages of kelp Ecklonia radiata for restoration. Restor Ecol 29:1–9

    Article  Google Scholar 

  • Szczepanek M, Siwik-Ziomek A (2019) P and K accumulation by rape- seed as affected by biostimulant under different NPK and S fertilization doses. Agronomy 9:9090477

    Article  Google Scholar 

  • Takolander A, Cabeza M, Leskinen E (2017) Climate change can cause complex responses in Baltic Sea macroalgae: A systematic review. J Sea Res 123:16–29

    Article  Google Scholar 

  • Thomsen MS, McGlathery K (2006) Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs. J Exp Mar Biol Ecol 328:22–34

    Article  Google Scholar 

  • Umanzor S, Jang S, Antosca R, Critchley AT, Yarish C, Kim JK (2020) Optimizing the application of selected biostimulants to enhance the growth of Eucheumatopsis isiformis, a carrageenophyte with commercial value, as grown in land-based nursery systems. J Appl Phycol 32:1917–1922

    Article  CAS  Google Scholar 

  • Ustyuzhanina NE, Bilan MI, Gerbst AG, Ushakova NA, Tsvetkova EA, Dmitrenok AS, Usov AI, Nifantiev NE (2016) Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea. Carbohydr Polym 136:826–833

    Article  CAS  PubMed  Google Scholar 

  • Vadas RL, Johnson S, Norton TA (1992) Recruitment and mortality of early post-settlement stages of benthic algae. Br Phycol J 27:331–351

    Article  Google Scholar 

  • Vatsos IN, Rebours C (2015) Seaweed extracts as antimicrobial agents in aquaculture. J Appl Phycol 27:2017–2035

    Article  CAS  Google Scholar 

  • Véliz K, Edding M, Tala F, Gómez I (2006) Effects of ultraviolet radiation on different life cycle stages of the Pacific kelps, Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae). Mar Biol 5:1015–1024

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vergés SA, Paul NA, Steinberg PD (2008) Sex and life-history stage alter herbivore responses to a chemically defended red alga. Ecology 89:1334–1343

    Article  PubMed  Google Scholar 

  • Xu N, Fan X, Yan X, Tseng CK (2004) Screening marine algae from China for their antitumor activities. J Appl Phycol 16:451–456

    Article  CAS  Google Scholar 

  • Wood D, Capuzzo E, Kirby D, Mooney-McAuley K, Kerrison P (2017) UK macroalgae aquaculture: What are the key environmental and licensing considerations? Mar Policy 83:29–39

    Article  Google Scholar 

  • Zeileis A, Hothorn T (2002) Diagnostic checking in regression relationships. R News 2:7–10

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ing. Carlos Ariel Bridge from NUTRITERRA S.A. for providing the Kelpak® (South Africa) product. This manuscript was produced during a postdoctoral stay at i~mar Research Center of the Universidad de Los Lagos, financially supported by the Centre of Biotechnology and Bioengineering (CeBiB, FB-0001). We also thank Rosemary Scoffield, Msc, a native speaker, for checking the grammar of the manuscript.

Funding

This work had the support of the Secretaría General de Ciencia y Tecnología, Universidad Nacional del Sur under grant number PGI 24/ZB88, Consejo Nacional de Investigaciones Científicas y Técnicas under grant number PIP-11220210100154CO and by the Agencia Nacional de Ciencia y Desarrollo (ANID, Chile) through the Centre of Biotechnology and Bioengineering (CeBiB, FB-0001), FONDECYT 1221161 and Núcleo Milenio MASH (NCN2021_033).

Author information

Authors and Affiliations

Authors

Contributions

Poza, Ailen M.: Conceptualization, Methodology, Sample processing, Formal analysis, Writing - Original Draft, Review and Editing, Visualization. Carolina Fernández: Review and Editing. M. Emilia Croce: Review and Editing. M. Cecilia Gauna: Resources, Review and Editing, Project administration, Alejandro H. Buschmann: Resources, Review and Editing, Supervision, Project administration.

Corresponding author

Correspondence to Ailen M. Poza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (JPG 21518 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poza, A.M., Fernández, C., Croce, M.E. et al. Performance of the estuarine alga Punctaria latifolia (Phaeophyceae) under different abiotic culture conditions. J Appl Phycol (2024). https://doi.org/10.1007/s10811-024-03212-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10811-024-03212-2

Keywords

Navigation