Skip to main content
Log in

Nannorrhops ritchiana Leaf-Based Biomolecular Extract-Mediated Silver Nanoparticles as a Platform for Mercury(II) Sensing, Antimicrobial Activity, and DNA Interaction

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Heavy metal-based pollutants are one of the most alarming health hazards causing multiple diseases including cancer, hepatotoxicity, brain hemorrhage, kidney and heart failures, etc. In this study, we report an ecofriendly, low cost, and simple synthesis of silver nanoparticles (AgNPs) mediated by Nannorrhops ritchiana leaf-based biomolecular extract as a key biosensor for the mercury(II) heavy metal. The formation of AgNPs was confirmed by using different characterization techniques including UV–visible spectroscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The synthesized AgNPs are yellowish-brown and exhibit the surface plasmon resonance around 435 nm. The various functional groups responsible for reduction of Ag+ to Ag0 and capping agents present in the leaf extract were confirmed by infrared spectroscopy. Energy-dispersive X-ray and scanning electron microscopic analysis were used to confirm the presence of silver and surface morphology of the nanoparticles, respectively. X-ray diffraction data suggested crystalline nature of the prepared nanoparticles. The AgNPs were successfully applied as a sensitive and selective platform for sensing of mercury(II) ions. Various parameters including nanoparticles loading, concentration of Hg+2, pH, and reaction time were optimized. The platform demonstrates a low limit of detection (4.8 × 10–7 M) and limit of quantification (4.8 × 10–7 M) with an R2 value of 0.999. The SS-DNA interaction with the AgNPs, studied by UV–Vis spectroscopy revealed intercalative mode of binding with a binding constant of 1.04 × 104 units. Importantly, this AgNPs platform also demonstrated good antibacterial efficacy against Proteus mirabilis, Shigella flexneria, Escherichia coli, and Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M., et al.: Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Environ. 575, 231–246 (2017)

    Article  Google Scholar 

  2. Baghayeri, M.; Amiri, A.; Motamedifar, A.: Investigation about electrocatalytic oxidation of glucose on loaded Ag nanoparticles on functionalized carbon nanotubes. Ionics 22, 1709–1717 (2016)

    Article  Google Scholar 

  3. Baghayeri, M.; Nodehi, M.; Amiri, A.; Amirzadeh, N.; Behazin, R.; Iqbal, M.Z.: Electrode designed with a nanocomposite film of CuO honeycombs/Ag nanoparticles electrogenerated on a magnetic platform as an amperometric glucose sensor. Anal. Chim. Acta 1111, 49–59 (2020)

    Article  Google Scholar 

  4. Baghayeri, M.; Nabavi, S.; Hasheminejad, E.; Ebrahimi, V.: Introducing an Electrochemical Sensor Based on Two Layers of Ag Nanoparticles Decorated Graphene for Rapid Determination of Methadone in Human Blood Serum. Top. Catal. 65, 623–632 (2022)

    Article  Google Scholar 

  5. Baghayeri, M.; Veisi, H.; Farhadi, S.; Beitollahi, H.; Maleki, B.: Ag nanoparticles decorated Fe3O4/chitosan nanocomposite: synthesis, characterization and application toward electrochemical sensing of hydrogen peroxide. J. Iran. Chem. Soc. 15, 1015–1022 (2018)

    Article  Google Scholar 

  6. Bello, B.A.; Khan, S.A.; Khan, J.A.; Syed, F.Q.; Mirza, M.B.; Shah, L., et al.: Anticancer, antibacterial and pollutant degradation potential of silver nanoparticles from Hyphaene thebaica. Biochem. Biophys. Res. Commun. 490, 889–894 (2017)

    Article  Google Scholar 

  7. Tien, D.; Liao, C.; Huang, J.; Tseng, K.; Lung, J.; Tsung, T., et al.: Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Rev. Adv. Mater. Sci. 18, 750–756 (2008)

    Google Scholar 

  8. Mafune, F.; Kohno, J.; Takeda, Y.; Kondow, T.; Sawabe, H.: Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 9111–9117 (2000)

    Article  Google Scholar 

  9. Yin, B.; Ma, H.; Wang, S.; Chen, S.: Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J. Phys. Chem. B 107, 8898–8904 (2003)

    Article  Google Scholar 

  10. Pingali, K.C.; Rockstraw, D.A.; Deng, S.: Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Sci. Technol. 39, 1010–1014 (2005)

    Article  Google Scholar 

  11. Mittal, A.K.; Chisti, Y.; Banerjee, U.C.: Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013)

    Article  Google Scholar 

  12. Sharma, V.K.; Yngard, R.A.; Lin, Y.: Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Coll. Interface. Sci. 145, 83–96 (2009)

    Article  Google Scholar 

  13. Jha, A.K.; Prasad, K.; Prasad, K.; Kulkarni, A.: Plant system: nature’s nanofactory. Colloids Surf., B 73, 219–223 (2009)

    Article  Google Scholar 

  14. Mahmood, A.; Sharif, M.; Ahmad, Q.; Mahmood, R.; Riaz, S.; Zafar, M.: Phytochemical analysis and comprehensive evaluation of antimicrobial activity of Nannorhops ritchiana leaves (Mazari palm). World J. Pharm. Pharm. Sci. 6, 173–189 (2017)

    Google Scholar 

  15. Ding, Y.: Organic molecule based chemosensors for biomedical application. Curr. Med. Chem. 26, 3921–3922 (2019)

    Article  Google Scholar 

  16. Koshki, M.; Baghayeri, M.; Fayazi, M.: Application of sepiolite/FeS2 nanocomposite for highly selective detection of mercury(II) based on stripping voltammetric analysis. J. Food Measure. Charact. 15, 5318–5325 (2021)

    Article  Google Scholar 

  17. Baghayeri, M.; Amiri, A.; Karimabadi, F.; Di Masi, S.; Maleki, B.; Adibian, F.; Pourali, A.R.; Malitesta, C.: Magnetic MWCNTs-dendrimer: A potential modifier for electrochemical evaluation of As (III) ions in real water samples. J. Electroanal. Chem. 888, 115059 (2021)

    Article  Google Scholar 

  18. Ichinoki, S.; Kitahata, N.; Fujii, Y.: Selective determination of mercury (II) ion in water by solvent extraction followed by reversed-phase HPLC. J. Liq. Chromatogr. Relat. Technol. 27, 1785–1798 (2004)

    Article  Google Scholar 

  19. Yang, Q.; Tan, Q.; Zhou, K.; Xu, K.; Hou, X.: Direct detection of mercury in vapor and aerosol from chemical atomization and nebulization at ambient temperature: exploiting the flame atomic absorption spectrometer. J. Anal. At. Spectrom. 20, 760–762 (2005)

    Article  Google Scholar 

  20. Kuswandi, B.; Dam, H.H.; Reinhoudt, D.N.; Verboom, W.: Development of a disposable mercury ion-selective optode based on trityl-picolinamide as ionophore. Anal. Chim. Acta 591, 208–213 (2007)

    Article  Google Scholar 

  21. Tao, H.; Lin, Y.; Yan, J.; Di, J.: A plasmonic mercury sensor based on silver–gold alloy nanoparticles electrodeposited on indium tin oxide glass. Electrochem. Commun. 40, 75–79 (2014)

    Article  Google Scholar 

  22. Botasini, S.; Heijo, G.; Méndez, E.: Toward decentralized analysis of mercury (II) in real samples. A critical review on nanotechnology-based methodologies. Anal. Chim. Acta 800, 1–11 (2013)

    Article  Google Scholar 

  23. Rosi, N.L.; Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005)

    Article  Google Scholar 

  24. Karimi-Maleh, H.; BeitollahiP, H.; Kumar, S.; Tajik, S.; Jahani, P.M.; Karimi, F.; Karaman, C.; Vasseghian, Y.; Baghayeri, M.; Rouhi, J.; Show, P.L.; Rajendran, S.; Fu, L.; Zare, N.: Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem. Toxicol. 164, 112961 (2022)

    Article  Google Scholar 

  25. Elahi, N.; Kamali, M.; Baghersad, M.H.: Recent biomedical applications of gold nanoparticles: a review. Talanta 184, 537–556 (2018)

    Article  Google Scholar 

  26. Du, J.; Jiang, L.; Shao, Q.; Liu, X.; Marks, R.S.; Ma, J., et al.: Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 9, 1467–1481 (2013)

    Article  Google Scholar 

  27. Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Zhang, C.; Xu, P., et al.: A visual application of gold nanoparticles: simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sens. Actuators, B Chem. 243, 946–954 (2017)

    Article  Google Scholar 

  28. Raj, D.R.; Prasanth, S.; Vineeshkumar, T.; Sudarsanakumar, C.: Surface plasmon resonance based fiber optic sensor for mercury detection using gold nanoparticles PVA hybrid. Opt. Commun. 367, 102–107 (2016)

    Article  Google Scholar 

  29. Minhaz, A.; Khan, N.; Jamila, N.; Javed, F.; Imran, M.; Shujah, S., et al.: Schiff base stabilized silver nanoparticles as potential sensor for Hg (II) detection, and anticancer and antibacterial agent. Arab. J. Chem. 13, 8898–8908 (2020)

    Article  Google Scholar 

  30. Palanisamy, S.; Zhang, X.; He, T.: Simple colorimetric detection of dopamine using modified silver nanoparticles. SCIENCE CHINA Chem. 59, 387–393 (2016)

    Article  Google Scholar 

  31. Kumar, D.A.; Palanichamy, V.; Roopan, S.M.: Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 127, 168–171 (2014)

    Article  Google Scholar 

  32. Tariq, M.; Muhammad, N.; Sirajuddin, M.; Ali, S.; Shah, N.A.; Khalid, N., et al.: Synthesis, spectroscopic characterization, X-ray structures, biological screenings, DNA interaction study and catalytic activity of organotin (IV) 3-(4-flourophenyl)-2-methylacrylic acid derivatives. J. Organomet. Chem. 723, 79–89 (2013)

    Article  Google Scholar 

  33. Kasap S. O, Principles of Electronic Materials and Devices vol. 2: McGraw-Hill New York, (2006).

  34. A. K. Mittal, A. Kaler, and U. C. Banerjee, "Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum," Nano Biomed. Eng., 4, (2012).

  35. Ravi, S.S.; Christena, L.R.; SaiSubramanian, N.; Anthony, S.P.: Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range. Analyst 138, 4370–4377 (2013)

    Article  Google Scholar 

  36. Deng, L.; Ouyang, X.; Jin, J.; Ma, C.; Jiang, Y.; Zheng, J., et al.: Exploiting the higher specificity of silver amalgamation: selective detection of mercury (II) by forming Ag/Hg amalgam. Anal. Chem. 85, 8594–8600 (2013)

    Article  Google Scholar 

  37. Sebastian, M.; Aravind, A.; Mathew, B.: Green silver-nanoparticle-based dual sensor for toxic Hg (II) ions. Nanotechnology 29, 355502 (2018)

    Article  Google Scholar 

  38. Rastogi, L.; Sashidhar, R.; Karunasagar, D.; Arunachalam, J.: Gum Kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118, 111–117 (2014)

    Article  Google Scholar 

  39. Abbas, K.; Znad, H.; Awual, M.R.: A ligand anchored conjugate adsorbent for effective mercury (II) detection and removal from aqueous media. Chem. Eng. J. 334, 432–443 (2018)

    Article  Google Scholar 

  40. Awual, M.R.: Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem. Eng. J. 307, 456–465 (2017)

    Article  Google Scholar 

  41. Liau, S.; Read, D.; Pugh, W.; Furr, J.; Russell, A.: Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25, 279–283 (1997)

    Article  Google Scholar 

  42. Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.; Kim, T.; Kim, J.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668 (2000)

    Article  Google Scholar 

  43. Davis, W.; Stout, T.: Disc plate method of microbiological antibiotic assay: II. novel procedure offering improved accuracy. Appl. Microbiol. 22, 666–670 (1971)

    Article  Google Scholar 

  44. Rajarajeswari, C.; Ganeshpandian, M.; Palaniandavar, M.; Riyasdeen, A.; Akbarsha, M.A.: Mixed ligand copper (II) complexes of 1, 10-phenanthroline with tridentate phenolate/pyridyl/(benz) imidazolyl Schiff base ligands: Covalent vs non-covalent DNA binding, DNA cleavage and cytotoxicity. J. Inorg. Biochem. 140, 255–268 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaukat Shujah or Umar Nishan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Shujah, S., Nishan, U. et al. Nannorrhops ritchiana Leaf-Based Biomolecular Extract-Mediated Silver Nanoparticles as a Platform for Mercury(II) Sensing, Antimicrobial Activity, and DNA Interaction. Arab J Sci Eng 48, 7673–7684 (2023). https://doi.org/10.1007/s13369-023-07682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07682-3

Keywords

Navigation