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ABSTRACT 
 
 

 
 The current state of the art techniques of Software Engineering lack a formal 

method and metric for measuring the safety index of a software system.  The lack of such 

a methodology has resulted in a series of highly publicized and costly catastrophic failures 

of high–assurance software systems.  This dissertation introduces a formal method for 

identifying and evaluating the weaknesses in a software system using a more precise 

metric, counter to traditional methods of development that have proven unreliable.  This 

metric utilizes both a qualitative and quantitative approach employing principles of 

statistics and probability to determine the level of safety, likelihood of hazardous events, 

and the economic cost–benefit of correcting the flaws through the lifecycle of a software 

system.  This dissertation establishes benefits in the fields of Software Engineering of 

high–assurance systems, improvements in Software Safety and Software Reliability, and 

an expansion within the discipline of Software Economics and Management. 
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EXECUTIVE SUMMARY 
 
 

 
Despite significant efforts to improve the reliability and success of software 

system development, there exists an inherent level of failure within all software based 

systems.  A decision to select one software system over another must be made considering 

the level of failure and its consequences.  Due to the proliferation in technological 

requirements and control, government and private organizations increasingly require 

high–assurance software development that cannot be satisfied by standard techniques.  I 

introduce in this dissertation a stepwise method for measuring and reporting the potential 

safety of a software system, based on an assessment of the potential for event failure and 

the corresponding potential for that failure to result in a hazardous event. 

The lack of such a methodology and assessment has resulted in a series of 

unforeseen, highly publicized, and costly catastrophic failures of high–assurance software 

systems.  This dissertation introduces a formal method for identifying and evaluating the 

weaknesses in a software system using a more precise metric, counter to traditional 

methods of development that have previously proven unreliable.  This metric utilizes both 

a qualitative and quantitative approach employing principles of statistics and probability 

to determine the level of safety, likelihood of hazardous events, and the economic cost–

benefit of correcting flaws through the lifecycle of a software system. 

From this dissertation, the state of the art of Software Safety and Software 

Engineering benefits from a review of the faults and complexities of software 

development, a formal model for assessing Software Safety through the development 

process, the introduction of a common metric for evaluating and assessing the qualitative 

and quantitative factors of a Software System, improvements and awareness of the facets 

of Software Safety Economics, and a formal study of the state of the art of Software 

Safety.  This dissertation serves as a primer for future research and improvements to the 

development process and to increase awareness in the field of Software Safety and 

Software Engineering. 
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I. INTRODUCTION 

“To err is human, but to really foul things up requires a computer”1 

The Farmers’ Almanac for 1978 

 
A. PROBLEM AND RESULTS 

When the first modern computer based systems were deployed, just a mere fifty 

years ago, they were designed to make simplistic calculations at a processing speed 

greater then those possible by man and at a higher rate of reliability.2, 3  In their initial 

stages, their operators would manually verify calculations and procedures to ensure 

accuracy and compliance with established standards.  Today, software based computer 

systems are no longer used exclusively to simply make radiometric calculations – they 

are developed to monitor, process, and control a wide variety of complex operations 

whose failure could result in significant danger and damage to the operators, the general 

public, and to the environment. 

Despite significant efforts to improve the reliability of software system 

development, there exists an inherent level of failure within all software based systems.  

A decision to select one software system over another must be made considering the level 

of failure and its consequences.  The research of this dissertation has failed to identify a 

viable measure of software safety in the current state of the art.  It is the purpose of this 

dissertation to establish a method for measuring and reporting the potential safety of a 

software system, based on an assessment of the potential for event failure and the 

corresponding potential for that failure to result in a hazardous event. 

From this dissertation, the state of the art of Software Safety and Software 

Engineering will benefit from a review of the faults and complexities of software 

                                                                                                                                                 
1 Capsules of Wisdom, The Farmers’ Almanac for 1978, Yankee Publishing; 1977. 
2  Computer History Collection, The Smithsonian Institute; 2003. 
3  War Department, Branch of Public Relations, Press Release, Ordnance Department Develops All-

Electronic Calculating Machine, War Department, United States Government; 16 February 1946. 
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development, a formal model for assessing Software Safety through the development 

process, the introduction of a common metric for evaluating and assessing the qualitative 

and quantitative factors of a Software System, the improvements and awareness of the 

facets of Software Safety Economics, and a formal study of the state of the art of 

Software Safety.  It is the intent that this dissertation serves as a primer for future 

research and improvements to the development process and to increase awareness in the 

field of Software Safety and Software Engineering. 

B. LEARNING AT THE EXPENSE OF FAILURE 

1. Failure Due to a Factor of 4.454 
On December 11, 1998 at 18:45:51 UTC5 (13:45:51 EST), the Mars Climate 

Orbiter (MCO) departed the Cape Canaveral Air Force Station aboard a Delta II Launch 

Vehicle on a six year mission to collect information on the Martian climate and serve as a 

relay station for future Mars Missions.6  After nine months of interplanetary travel, the 

MCO was scheduled for Mars orbital insertion on the morning of September 23, 1999.  

At 09:00:46Z the MCO’s main engines commenced a preplanned 16 minute and 23 

second aerobreaking maneuver to slow the craft prior to entry into the Martian 

atmosphere.  At the time of main engine burn, the vehicle was traveling at over 12,300 

mph or 5.5 km/sec.  Four minutes later, as the vehicle passed behind the Martian Planet, 

signal reception from the MCO was lost.  Signals were lost 49 seconds earlier than 

predicted due to planetary occultation.7  After 09:04:52Z, no signal was regained.  For 48 

hours, NASA and JPL made exhaustive attempts to reacquire the signal and locate the 

MCO.  On September 25, 1999, the Mars Climate Orbiter was declared lost. 

                                                                                                                                                 
4  The figure 4.45 is analogous to the metric to pounds force conversion factor that was overlooked 

during the mathematical processing of the Mars Climate Orbiter navigational algorithm, referenced 
later in this sub-chapter. 

5 Also referred to as “Z” or “ZULU” Time Zone, Coordinated Universal Time, The Merriam-Webster’s 
Collegiate Dictionary, Tenth Edition, Merriam Webster, Incorporated; Springfield, Massachusetts; 
1999. 

6 Mars Climate Orbiter Mission Overview, Jet Propulsion Laboratory, Mission Overview, National 
Aeronautics and Space Administration and Jet Propulsion Laboratory; 1998 – 1999. 
http://mars.jpl.nasa.gov/msp98/orbiter/launch.html 

7 Def: The phenomenon that occurs when a vehicle passes behind another celestial body, obscuring the 
vehicle from view and reducing its ability to communicate with other receivers in line of sight. 
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Investigations into the loss of the Mars Climate Orbiter revealed that the orbiter 

was over 170 km below its planned entry altitude at the time of main engine firing.  The 

MCO Mishap Investigation Board found the cause of the mishap to be a failure to use 

Metric (Newton) units in the coding of the ground software file of the trajectory models, 

in direct contradiction of system development requirements.8 , 9   In contrast, thruster 

performance data was reported and stored in the system’s database in English (pounds 

force) units.  The lack of a conversion factor placed the orbiter in too low a trajectory to 

be sufficiently slowed prior to entry into the atmosphere.  At its estimated rate of entry, 

the Mars Climate Orbiter most likely burnt up on orbital insertion, skipped off the 

atmosphere and reentered space with catastrophic damage, or impacted the Martian 

surface and was destroyed (see Figure 1).  None of the planned mission objectives were 

achieved.  Mission expenditures totaled $327.6 million with $193.1 million for spacecraft 

development, $91.7 million for launch, and $42.8 million for mission operations.  In 

addition, future Mars missions were placed in jeopardy without a dedicated radio orbiter; 

a mission that would have been filled by the MCO. 

                                                                                                                                                 
8 Mars Climate Obiter Mishap Investigation Board Report, Phase I Report, National Aeronautics and 

Space Administration and Jet Propulsion Laboratory; 10 November 1999. 
9 Note: English thrust units are in Pounds–Force – Second, while Metric thrust units are in Newton – 

Second.  The conversion factor is 1 Pound Force = 4.45 Newton. 
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Figure 1 Mars Climate Orbiter Failure 

2. Premature Shutdown 
Just three months after the loss of the MCO, on the morning of December 3rd, 

1999, the Mars Polar Lander, the second in a series of Mars Planetary Explorers, 

experienced a premature shutdown of its main engines and deployment of its lander legs 

during its terminal decent propulsion phase to the Martian Planet.10   The premature 

shutdown and deployment was attributed to a loss of system telemetry data.  The 

premature shutdown resulted in the lander free–falling to the planet’s surface and 

eventual destruction.  Investigation revealed an inability in the software system’s base 

logic to correct for the loss of telemetry data or execute a failsafe maneuver. 

Mishap Investigation Boards determined the fault in both spacecraft mishaps to be 

poor project management practices and oversight, improper development techniques, the 

failure to completely test the control systems, the failure to properly detect potential 

                                                                                                                                                 
10 Mars Polar Lander Mishap Investigation Board Report, National Aeronautics and Space 

Administration and Jet Propulsion Laboratory; Washington D.C.; 28 March 2000. 
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hazards and faults, and the failure to take precautions to prevent such catastrophic 

mishaps.  Both systems were developed under the NASA principle of “Better, Faster, 

Cheaper.”11  The second failure resulted in the total loss of over half a billion dollars of 

sophisticated space equipment and the failure to establish the deployed base 

infrastructure for future Mars missions. 

C. A HISTORICAL TREND OF FAILURE 

At the end of the 20th Century, Software Failure has proven one of the greatest 

detractors of public confidence in the technology.12  A 1995 study by the Standish Group 

noted that over 31.1% of the projects sampled were cancelled before they were ever 

completed.13  Of the remaining 68.9%, 52.7% exceeded projected costs by a staggering 

189%.  It was estimated that American companies and the Federal Government lost over 

$81 billion to cancelled projects in a single year, and an additional $59 billion to software 

systems that were delayed or were completed past their expected delivery time.  It is 

inappropriate to use the term “expense”, as was referred to in the study, but rather to the 

term “lost”, as organizations received no additional reward or gain for additional money 

spent.14  While the phrase may be a matter of semantics, it is essential that researchers 

and evaluators of Software Safety do not attempt to soften or mitigate their vocabulary at 

the cost of hiding the significant dangers that lurk within software system failures. 

Through the end of the decade, the statistics failed to improve.  A large sampling 

of over 8,000 software systems revealed that over 40% of the Information Technology 

(IT) projects end in failure.  Of the remaining 60%, 33% were either over budget, 

completed past their expected delivery date, or lacked primary features specified in 

system requirements, or both.  The total cost in lost productivity and material, lost 

                                                                                                                                                 
11 Goldin, Dan; Public remarks to JPL Employees, NASA Public Affairs, National Aeronautics and 

Space Administration; Washington, D.C.; 28 May 1992. 
12 Interagency Working Group (IWG) on Information Technology Research and Development (IT R&D), 

Information Technology: The 21st Century Revolution, Overview, High Confidence Software and 
Systems, National Coordination Office for Information Technology Research and Development, 
www.ccic.gov/pubs/blue01/exec_summary.html. 

13 Chaos, The Standish Group, The Standish Group International; West Yarmouth, Massachusetts; 1995. 
14 See Chapter Endnote I.I.1. – Software Failure Cost 
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revenue, and legal compensatory damage due to failed or flawed software was beyond 

computation.  Some estimates put the total American loss well in excess of $150 billion 

annually, 15 , 16  an amount greater then the GDP of Hong Kong, Greece, Israel, or 

Ireland.17, 18 One of most disturbing consequences of Software Failure is the increasing 

trend in deaths and human maiming.19 

Despite over 50 years of software development, the discipline of Software 

Engineering (SE) has failed to improve in cadence with the technology that it marches 

alongside of.  Statistically speaking, software development is a failing industry, buoyed 

up only by the demand and requirement for systems to control the same technology that it 

fails to keep pace with.  Consumers have grown callous to the fact that the software they 

have purchased will be flawed, require updates and service packs, and will crash at the 

most inopportune moment.  Businesses budget for and expect to pay for extended delays 

and faults, take out insurance against the inevitable failure, and develop manual 

contingency plans to continue operations in the event that automation fails.  Due to the 

complexity of some high–assurance systems, there is no manual contingency to fall back 

upon in the event of a loss of automated control. 

Software Engineering is often confused and misconstrued with the simplistic 

discipline of software programming; where software programming is the basic process of 

putting code to keyboard, Software Engineering is the complex process of developing 

and implementing the logic and methodology behind the code.  The Software 

Engineering discipline encompasses the study of: 

                                                                                                                                                 
15 Note:  It is estimated that the American public spent over $250 billion on application development in 

1995, according to the 1995 Chaos study by The Standish Group – The Standish Group International; 
West Yarmouth, Massachusetts; 1995. 

16 Neumann, Peter G.; Moderator, Risks – Forum Digest, Forum On Risks To The Public In Computers 
And Related Systems, ACM Committee on Computers and Public Policy, Published weekly, SRI Inc. 

17 CIA World Factbook, 2000 Edition, United States Central Intelligence Agency (CIA); 2000. 
18 Note:  In addition to the countries listed, there are over 195 countries with GDPs less then $150 

Billion, according to the CIA World Factbook, 2000 Edition. 
19 Neumann, Peter G.; Moderator, Risks – Forum Digest, Forum On Risks To The Public In Computers 

And Related Systems, ACM Committee on Computers and Public Policy, SRI Inc. 
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• Efficiency and practicability of code, 

• Modernization techniques, 

• Reusability, 

• The compiling processes, 

• Process assurance, 

• Technological management of information, 

• The applied psychology of the developers, 

• The management and maturity of the design process, 

• The ultimate integration of the software product into the final system.20 

The IEEE Standard simply defines Software Engineering as “the application of a 

systematic, disciplined, quantifiable approach to the development, operation, and 

maintenance of software.” 21 , 22  What Software Engineering has not mastered is the 

discipline of Software Safety. 

Since the 1960, when the term was first coined, Software Engineers have 

attempted to design and develop safe and reliable systems that are cost effective and 

technologically advanced to control and manage sophisticated systems.  Despite valiant 

efforts, history has demonstrated that software fails to remain economical, efficient, 

reliable, or safe, and that a vast number of projects fail to use systematic and disciplined 

approaches to design.  The results are evident by the growing number of failures and 

faults that are recorded annually (see APPENDIX B – INCIDENTS AND MISHAPS). 

                                                                                                                                                 
20 Weinberg, Gerald; The Psychology of Computer Programming, Dorset House Publishing; 1999. 
21 def: Software Engineering, IEEE Standard Glossary of Software Engineering Terminology, IEEE 

Standard 610.12, Institute of Electrical and Electronics Engineers, Inc.; 1990, 1991. 
22 See Chapter Endnotes I.I.2 – NATO Software Engineering Definition 
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D. QUESTIONING SOFTWARE SAFETY 

1. Software is Prone to Failure 
Failure is an inevitability that must be anticipated, investigated, and compensated 

for.  The current state of the art of Software Development has failed to solve the problem 

of quantifying Software Safety and reducing Software Failure.  The statistics of Software 

Failures are well documented in academic and industry literature, as well as in the public 

press.  Previous efforts have been made at quantifying the risks of software development 

as well as identifying the procedures for dealing with these risks.23  While these efforts 

have made great strides at categorizing development risks,24 they have failed to identify a 

common criterion for development risk and system safety.  Coincidental with the absence 

of a common risk criterion is the lack of a common safety or quality assurance criterion. 

Due to the proliferation in technological requirements and control, government 

and private organizations increasingly require high–assurance software development that 

cannot be satisfied by standard techniques.  According to the Defense Advanced 

Research Projects Agency's (DARPA) Joint Technology Office Operating System 

Working Group, comprised of DARPA, NSA, and the Defense Information Systems 

Agency (DISA), many critical government applications require a high–assurance for 

safety, security, timeliness, and reliability.25   Examples of such applications include 

nuclear power plant control systems, biomedical devices, avionics and flight control 

systems, systems that protect classified information, and command, control, computers, 

communications, and intelligence (C4I) systems.26  Due to rapidly changing development 

techniques, little work has been done in the development and integration of high–

confidence systems.  Currently, interactions and integrations are poorly understood and 

                                                                                                                                                 
23  See Chapter II.E – STANDARDIZED FOUNDATION OF SOFTWARE SAFETY 
24 Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 

Postgraduate School; Monterey, California; September 2000. 
25 Bury, Lawrence; Software Engineering Tools, A Technology Forecast, NSA Office of INFOSEC 

Research and Technology; February 1999, 
http://www.nsa.smil.mil/producer/forecast/reports/set/set.html. 

26 Note: For this dissertation, Command, Control, Computers, Communications, and Intelligence (C4I) is 
analogous to Command and Control (C2); Command, Control, and Communications (C3); and 
Information Warfare (IW). 
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analytic tools for specifying and decomposing complex properties are flawed or non–

existent.  Formal methods and specifications typically are used in developing high–

assurance type systems.  Formal methods must also be integrated to include Software 

Safety and assurance techniques.27  To enhance the process, the U.S. Government is 

attempting the integration of “program understanding” tools. 

A DARPA/NSA/DISA Joint Technology Office (JTO) working group has stated 

that, “mission–critical systems are subject to a number of stringent design and operation 

criteria, which have only recently begun to emerge as significant requirements of 

commercial systems.”  These criteria, which include dependability, security, real–time 

performance and safety have traditionally been addressed by different communities 

yielding solutions that, at best, fail to meet constraints imposed by other criteria and, at 

worst, may interact to degrade the overall level of confidence that the system can fulfill 

its mission.  While little work has been done to integrate high–confidence systems, it has 

become clear that these constraints are not orthogonal and cannot be jointly met through 

simple layering or the composition of independently derived services.  Interactions are 

poorly understood and analytic tools for specifying and decomposing complex properties 

are non–existent. 

Software is prone to failure.  While no system can ever be 100% safe and fool 

proof, every effort should be made to identify and reduce the number or potential for 

unsafe incidents. 

2. How Can Software Be Determined Safe? 
Increasingly, the fields of military defense and commercial industry require 

technologically complex software tools to maintain and manage their critical systems.  

These critical systems have become far too intricate to be maintained by humans or by 

simple and easily proven hardware.  Historically, the failure of such systems has resulted 

in the detrimental loss of essential military components, weakening our national defense; 

                                                                                                                                                 
27 Research Challenges in Operating System Security, DARPA/NSA/DISA Joint Technology Office 

Operating System Security Working Group; August 1998. 
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of governmental support systems, sending our national data stores and operations into 

chaos; and of manufacturing and fabrication units, directly affecting productivity and our 

country’s gross national product.  Far too many lives have been lost and far too many 

resources have been wasted on untested and unproven software that failed at the most 

critical and inopportune moments. 

Presently, Software Safety and the development of critical software systems focus 

on four principles of hazard control, namely: 

• Eliminating the potential hazard from the software system. 

• Prevent or minimize the occurrence of the hazard. 

• Control the hazard if it occurs. 

• If the hazard occurs, minimize the severity of the damage. 

Despite the best efforts to manage system hazards, software cannot be developed 

and referred to as safe unless the spark that resulted in the hazard can be identified and 

isolated, and the system can be judged against an accepted criterion for safety. 

QUESTION:  Is it possible to develop a common assessment criterion that can 

determine if software is safe? 

The needed assessment criterion must be cost effective, efficient, and easy to 

implement.  This assessment criterion must be structured and well defined, and easily 

integrated into the development process.  This assessment criterion must include 

techniques for evaluating potential safety flaws from the requirements level through the 

implementation and use.  The assessment criterion must identify the potential 

catastrophic consequences of the Software Failure.  Additionally, this assessment 

criterion must include a safety investigation and determination process for regression 

testing necessary after software requirement changes.  While it is popular to simply rely 

on a single assessment to determine the safety of a system, such an assessment is not cost 

effective.  A complete assessment requires analysis and test data that supports the 

conclusion of the analysis.   
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Chapter II and III outline many of the failures in software testing and assessments 

that are crucial to the success of a safety related software system.  Chapter IV and V 

describe the principle elements of successful assessment process and the data necessary 

to certify the validity of the assessment. 

3. What Can Be Done to Make Software Safer? 
In parallel with determining the safety of a software system, it is essential to 

improve techniques for the continual development of safe software.  The field of 

Software Safety is no more in its infancy than the field of Software Engineering.  

Software Engineering is based on general principles of logic, rooted in mathematics and 

science.  While the application of software to electronics is only half a century old, the 

fundamental core of software operation is rooted in the timeless concepts of logic and 

reasoning.  Such concepts can be related or traced to early schools of philosophy and 

applied psychology. 28   Due to the increasing rate in technological advancements in 

computer science and Software Engineering, and the heavy reliance on automated 

management systems, software failures have become increasingly costly and pronounced.  

As automation reliance increased, the ability for existing safety measures to prevent an 

accident has decreased.  As technology advances and broadens its scope of control, the 

numbers of catastrophic events that can be triggered from a single software failure 

become near limitless. 

The method must be applicable to traditional and new types of development 

techniques.  This method must be able to identify and prevent the new types of accidents 

and failure modes that can arise with automated assurance systems.  This method must be 

capable of detecting, tracking, and indicating trends in unsafe programming and 

development to prevent future mishaps through a change in procedures and environment.  

This method must span the entire lifecycle of the development and integration, and 

include using integrated systems, software, and human task models to analyze the safety 

of the complete system.  This method must review system–level requirements for 

                                                                                                                                                 
28 Young, Norman; Computer Software Cannot Be Engineered, Private papers; 1999, 

http://the2ndcr.mg1.net/cscbe.html. 
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completeness and constraints control, including examining the ramifications of 

automation and human task design decisions on overall system safety.  This method 

should devise design techniques and tools for performing integrated hazard analyses on 

formal system, software, and operator task models.  For the benefit of mishap reviews 

and software forensics, this method must permit backward tracing of hazardous states to 

determine what human errors and software behaviors are most critical with respect to 

hazardous system states. 

E. GENERAL APPROACH 

Software or System Safety is traditionally defined as a system’s ability to operate 

within the accepted and expected parameters of its requirements.29  Additionally, safety 

includes a system’s ability to prevent an unacceptable act, hazardous condition, or mishap 

from occurring.  To the contrary, risk can be defined as the frequency or probability that 

an unacceptable act or hazardous condition could occur; “How risky is the system?”  Risk 

can also be quantified with a measure of the consequences of the unfavorable action or 

severity of the mishap, or as an expression of possible loss in terms of severity and 

probability.30  “Is the system safe to use?”  “What is the risk of something going wrong 

with the system?”  Each of these viewpoints contributes to the overall concept of 

software system safety, despite their somewhat contradictory principles. 

A thorough study and investigation of subject matter literature has revealed a 

series of definitive factors that lead to degradations in Software Safety, including: 

• Lack of experience in software development and assessments, 

• Disjointed educational emphasis and training in the field of Software 

Safety, 

• Proprietary software development practices, definitions, requirements 

towards Software Safety, 

                                                                                                                                                 
29 Nesi, P.; Computer Science Dictionary, Software Engineering Terms, CRC Press; 13 July 1999, 

http://hpcn.dsi.unifi.it/~dictionary. 
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• A lack of understanding of the relationship between Software 

Development and Software Safety, 

• The over emphasis of quantifying failure while lacking appropriate 

emphasis to qualifying failure. 

We present a format to address or resolve these shortcomings through or by: 

• Establishing a knowledge base of Software Safety and risk management, 

as it applies to safety through the lifecycle of a system, 

• The introduction of a generalized series of practices and definitions for 

defining Software Safety, 

• The presentation of metrics for determining the safety index of a software 

system, 

• The review of the relationship between developmental actions and 

operational failures, 

• Improving efforts and practices towards identifying potential failures of 

Software Safety and methods for improvement, 

• The study of the quantitative and qualitative factors of Software Safety,  

• The development and introduction of the Instantiated Activity Model for 

depicting failure logic flow to determine the potential for malfunction. 

• The development and introduction of mathematical equations for 

the computation of the probability of occurrence of a malfunction. 

• The development and introduction of a computation of a software 

system’s Safety Index. 

• The discernment between developmental risk and software safety, 

• The ability to depict software safety mechanics in a common graphical 

format. 

                                                                                                                                                 
30 Draft Reference Guide for Operational Risk Management, Naval Safety Center, Department of the 

Navy; 09 September 1999. 
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In current practices, Software Safety and Risk Management consists of a checklist 

and metric–based practice that requires a formal detailed and documented process that 

relies on human subject matter expertise and automated investigation systems.31, 32, 33, 34, 35  

The goal of any measure would be to make it as intuitive as possible to eliminate any 

variable or chance that the user would deviate from the measure’s practice and 

procedures.  It would be essential that measures be refined sufficiently to ensure that 

users could objectively observe the variables of a system.  

The following chapters present a foundation for establishing a knowledge base of 

Software Safety and risk management, as it applies to safety through the lifecycle of a 

system.  Included are outlines and details for creating methods and metrics to determine 

the safety index of a software system. 

Investigation reveals the relationship between the development process and 

Software Safety.  A detailed investigation has been made on the methods of software risk 

management and software development, to determine the commonality and conflicts 

between the two as well as where refinements can be made to ultimately enhance 

Software Safety.  Efficiency and productivity dictate that Software Engineers must strike 

a delicate balance between the needs to reduce development risk and increase product 

safety, while inflicting as small as possible an impact on the engineering timeline and 

expense of development. 

Previous studies and efforts have concentrated on quantifying the risks associated 

with software development,36 and the actual evaluation of the development process to 

                                                                                                                                                 
31  Cigital Solutions and Cigital Labs, Cigital, Inc, Dullas, Virginia; 2004 
32 Kaner, Cem; Software Negligence and Testing Coverage, Software QA Quarterly, vol. 2, num. 2, pg. 

18; 1995/1996. 
33  Support Capabilities of the Software Engineering and Manprint Branch, Systems Performance and 

Assessment Division, Materiel Test Directorate, White Sands Missile Range; September, 2000. 
34  Newsletter: from Risknowlogy, Risknowlogy, Schinveld, The Netherlands; 14 January, 2004 
35  Safety Hazard Analysis and Safety Assessment Analysis (Probabilistic Software), Reliability 

Engineering at the University of Maryland, Department of Mechanical Engineering, College Park, 
Maryland. 

36 Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 
Postgraduate School; Monterey, California; September 2000. 
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determine the optimal method for creating the software.  While these previous methods 

benefited the development process and worked to ensure the successful completion of the 

project with minimal risk of exceeding planned budgets and schedules, they failed to 

detail the hazards of operating the product or the events that could cause specific hazards, 

either during the development or implementation process.  These previous studies have 

also failed to study the implications of unsafe incidents or hazards.  Addressed within this 

Dissertation are the development processes and risks to development, with the intent to 

design a method to efficiently engineer software with the greatest assurance of success 

and safety.  Also included is a review and study of the software development process37, 

concentrated on the identification of potential failures related to Software Safety and 

probable methods for improving the overall safety of the system.38 

Software Safety encompasses the study of the potential hazards of a software 

system, the subsequent consequences of the hazard, and the prevention of these hazards 

to ensure a safe product.  Software Safety comprises all of the phases of a software 

product’s lifecycle, from conception to implementation, re–composition, cross integration, 

and eventual retirement.  Software Safety is a subset of the greater System Safety concern 

that includes all causes of failures that lead to an unsafe state such as: 

• Hardware failures 

• Software failures 

• Failures due to electrical interference or due to human interaction 

• Failures in the controlled object. 

For the purpose of this dissertation, the study and methodology are restricted 

solely to Software Safety.  While many equate Risk Management to a quantifiable 

science,39 Software Safety is both quantitative and qualitative.  There are many intangible 

aspects of Software Safety that are not found on a spreadsheet or checklist, but are 

                                                                                                                                                 
37  See Chapter III. 
38  See Chapter V.E.4. 
39 Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 

Postgraduate School; Monterey, California; September 2000. 
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learned and mastered by understanding the principles of safety and fundamentals of 

software design.  This dissertation outlines, quantifies, and qualifies the factors of 

Software Safety as they apply to high–assurance systems. 

Software Safety can be pictorially and textually depicted in a rational fashion with 

many logic based development methods including Fault Tree Analysis (FTA), Petri Nets, 

Failure Modes Effect and Criticality Analysis (FMECA), HAZOP, Impact Analysis, and 

Cigital's Safety Net Methodology based on a technique called Extended Propagation 

Analysis.40  I have reviewed and included a study of applicable methods of hazard and 

safety analysis and their relationship to Software Development and Safety.  Where 

necessary, I have modified common methods to specifically apply to the unique 

characteristics of Software Engineering, Development, and Safety. 

                                                                                                                                                 
40 Software Safety, Resources – Definitions, Citigal Labs, Citigal; Dulles, Virginia; 2001. 
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Complexity 
Veritability of Inputs 

Cleanliness of Inputs (Quality) 
Dependability / Reliability Factor of Inputs 

Ability to Sanitize Inputs (Correction) 
Consequences of Sanitization 

Ability to Filter Inputs (Prevention) 
Consequences of Filtering 

Permeability of the Requirements 
Permeability of the Outputs 
Veritability of Outputs 

Ability to Verify Outputs (Quality) 
System quality control 

Ability to Sanitize Outputs (Correction) 
Consequences of Sanitization 

Ability to Filter Outputs (Prevention) 
Consequences of Filtering 

Probability of a Fault 
Consequence of Fault 
Probability of Failure 
Consequence of Failure 
Product Safety or Dependability Index. 

Table 1 Quantitative and Qualitative Factors of Safety 

The shortcomings of Software Safety can be improved upon by equating and 

assessing of quantitative and qualitative point values.   

Further chapters investigate and define the above factors of safety.  These 

quantitative values are demonstrated for independent, modular, and composite software 

systems. 

F. THE FOCUS OF SOFTWARE SAFETY 

The field of Software Safety has been understudied and underrepresented in 

literature until late due to the fact that, historically many of the previous software systems 

were controlled and protected by mechanical firewalls and human intervention.  Today’s 

technology can no longer be controlled by yesterday’s antiquated system techniques.  The 

current rate of decision–making processes demands an automated system beyond the 

capabilities of systems designed just a decade ago.  The logic complexities of today’s 

software systems overshadow the abilities of earlier languages and processor limitations.  
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The impacts of today’s Software Failures are magnified by the complexity and cost of the 

systems for which they control.  The primary focus of this study is on identifying factors 

that create the unsafe conditions through all phases of the software’s lifecycle. 

History has demonstrated that most mistakes and hazards are based on actions and 

occurrences that could have been prevented if proper methods and procedures were 

followed, or if well based and proven precautions and measures were implemented 

through the lifecycle of a system.  This study focuses on the methods and procedures that, 

if followed, would increase Software Safety and in turn decrease the failure rate of high–

assurance systems.  Additionally, this study identifies the measures and precautions that 

historically have proven successful in improving system safety in other disciplines and 

can be readily adapted to Software Engineering. 

Once the methods and practices that create a safer software product are 

understood, this dissertation outlines and describes a formal method for developing safe 

software, through the expansion and refinement of existing development methods and 

metrics.  Safety is not something that occurs, it is something that is developed and 

achieved – A system reaches a level of safety by preventing some factor of undesirable 

actions and not by the absence of all hazards.  Once there is an understanding of why 

software fails and the potential hazards of that failure, a formal metric and methodology 

can be designed that depicts the measure of that safety and appropriate procedures for 

improving the measure through development.  A product of this study includes a formal 

metric and methodology for measuring Software Safety and the processes for potentially 

improving the resulting product. 

The success of Software Safety relies on solving the dilemma of hazard 

avoidance through the entire lifecycle of the software system. 

As previously stated, Software Safety is a subset of System Safety and the 

associated failures and hazards.  For the purpose of this dissertation, this research and 

model are limited to and encompass the effects of Software Safety as it applies to the 

overall system.  This dissertation limits its research up to the point of software integration 
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into the complete software–hardware–human system.  A brief discussion is included to 

address hardware failures as they relate to software systems and the safety mechanisms 

that should prevent harmful incidents from such failures.  Included is an addressing of the 

effects of human interaction and interference as part of the investigation of potential 

software faults and failures. 

Risk management is a fundamental aspect of software development.  A significant 

number of studies, dissertations, and articles have delineated the constructive properties 

of risk management in the development process.  The concept of a risk–based approach 

to development has been proven to reduce or prevent procedure–based flaws and increase 

software development efficiency.41  This study reviews the concepts of risk and risk 

management as it applies to Software Engineering, and its applicability to Software 

Safety. 

G. CONTRIBUTIONS 

The contribution of this dissertation and study to the state of the art of Software 

Engineering include, but are not limited to: 

• A review of the faults and complexities of software development resulting 

in potential failures.  These potential failures are then evaluated to 

determine their contributory affect on hazard occurrence. 

• A formal model for assessing Software Safety through the development 

process to reduce or eliminate hazard occurrences. 

• The introduction of a common metric for evaluating and assessing the 

qualitative and quantitative factors of a Software System and development 

process. 

                                                                                                                                                 
41 Hughes, Gordon; Reasonable Designs, The Journal of Information, Law and Technology (JILT), 

Safety Systems Research Center, Computer Science Department, University of Bristol; Bristol, United 
Kingdom; 1999. 
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• Improvements and awareness of the facets of Software Safety Economics, 

based on accepted practices and principles. 

• A formal study of the state of the art of Software Safety. 

The first contribution of this dissertation to the state of the art of Software 

Engineering is the identification and classification of software events, faults, and 

complexities in the development process, potentially resulting in a system failure.  

Hazardous events can then be related the potential failures for determining cause and 

effect.  This dissertation outlines methods for controlling or mitigating the effect of 

system failures to prevent hazardous events. 

The second contribution of this dissertation to the state of the art of Software 

Engineering is the formalization of a model to incorporate Software Safety into the 

development process.  This formal model directly impacts and improves the state of the 

art by refining current methods of development to better identify unsafe practices and 

methodologies through the software lifecycle that could lead to failure. 

The third contribution of this dissertation is the introduction of a common metric 

for evaluating software and the development process to qualitatively and quantitatively 

determine a safety index of a particular software system.  This value can then be 

evaluated against potential hazards and faults to determine the cost–benefit ratio of 

efforts to remedy or prevent the hazard. 

A fourth contribution of this dissertation is an introduction and improvement of 

Software Safety economics, based on accepted practices and principles of statistics and 

probability.  Software economics are directly affected by the cost and ability of a 

software system to prevent or mitigate hazardous events.  This study will address the 

factors related to changes in the economic benefits of the system. 

The overall contribution of this dissertation to the state of the art of Software 

Engineering is the formal study and research in the under–represented field of Software 

Safety.  The success of this software development methodology is the increased 
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awareness of safety in high–assurance software systems, the reduction of risk through the 

software lifecycle, with corresponding increases in efficiency, decreases in overall 

software system costs, and a decrease in occurrence of hazards in a software system. 

H. ORGANIZATION OF DISSERTATION 

This dissertation is organized in eight chapters.  The introduction is included in 

the present chapter. 

Chapter II develops the theoretical foundation of the dissertation by defining the 

practice of Software Safety, and safety and risk as it applies to software development and 

engineering; by summarizing relevant works, literature, and studies on the field of 

Software Engineering.  Chapter II includes a review of the current state of the art of 

Software Safety Assurance, applicable standards, and safety assessment.  Chapter II also 

includes a refinement and introduction of definitions of Software Safety based on 

personal observations and the consolidation of existing designations. 

Chapter III characterizes the common flaws and faults of software development, 

referencing examples of failed systems derived from observation and investigation.  This 

chapter includes failures related to implementation and developmental failures, 

development requirements, testing methods, and assumptions.  A review is made of 

development requirements and testing methods as they pertain to Software Safety.  

Specific examples are given for each of the failure method types as well as efforts 

possible to amend the failure probabilities. 

Chapter IV outlines the conceptual framework for the evaluation of a software 

system and development of a safety assessment metric.  The conceptual framework 

includes the introduction of the goal of a safety development and metric development.  

Chapter IV will introduce a discussion of the aspects of software safety, incorporating 

definitions and potential techniques.  Finally, the chapter will discuss the efforts 

necessary to graphically and textually depict Software Safety and Hazard Probability. 
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Chapter V depicts the application of the framework as a formal method for 

evaluating a software system.  Introduced is a presentation of an Instantiated Activity 

Model (IAM) that supports a formal approach for system safety analysis and risk 

assessment (SARA).42  This chapter details the development and implementation of a 

criterion that can be used to assess the stability and validity of a software system, as it 

applies to Software Safety.  The formal method for assessing software safety is 

introduced and demonstrated against a notional software system.  Through the 

development of the assessment method, this chapter discusses factors and controls 

capable of mitigating hazard probabilities. 

Chapter VI discusses the applicability of the formal method towards advancing 

Software Safety.  Special effort is given towards outlining efforts and factors of 

development automation, metric introduction, software management, and requirement 

completeness.  A discussion of perspective clientele for the safety assessment is 

introduced, as well as the applicability of the software assessment towards other safety 

engineering disciplines. 

Chapter VII discusses the justification for Software Safety Assurance, 

concentrating on legal responsibilities, certification, and economics.  A portion of this 

chapter’s concentration is on the legal, moral, and ethical requirements of software safety.  

Additional emphasis is placed on the cost–benefit of Software Safety and the 

applicability of the formal model to software development decisions. 

                                                                                                                                                 
42  Luqi; Liang, Xainzhong; Brown, Michael L.; Williamson, Christopher L.; Formal Approach for 

Software Safety Analysis and Risk Assessment via an Instantiated Activity Model, Software 
Engineering Automation Center, Naval Postgraduate School; Monterey, California. 
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Chapter VIII presents the conclusions and recommendations for integration of the 

model and metric into general practice.  Specific contributions are addresses and 

reviewed, including the factors of safety failures, definitions, metrics, and process 

improvements.  Suggestions for future work and perspective changes to legal protections 

are concluded within this chapter.  Finally, Chapter VIII presents a dissertation 

conclusion to briefly summarize and complete the intent of this study. 

Appendix A lists applicable definitions as they refer to Software Engineering and 

Software Safety.  Appendix B summarizes recent public and private software 

development efforts that have failed, their associated consequences, and historical 

background where applicable.  Appendix C lists abbreviations referred to in this 

dissertation.  Appendix D provides supplemental material beneficial to understanding 

Software Safety.  Appendix E provides an example of code sizes contrasting against 

various logic statements. 

For the purpose of brevity, this dissertation omits or summarizes some topics that 

are obvious to individuals familiar with the practices of software development and 

Software Engineering. 

I. CHAPTER ENDNOTES 

The following endnotes are included as part of the research document, and may or 

may not be included in the final dissertation submission. 

1. Software Failure Cost 
The dissertation uses the term “Lost” when describing the expense of funds to 

correct failures, software defects, management oversights, and compensatory costs.  The 

terms “Lost” or “Loss” directly contradict the commonly used term of “Expense” or 

“Spend” used in various management documentations.  A “Loss” is defined as the act of 

failing to gain, win, or obtain something for a said effort; while “Lost” is the past 
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participle of “Loss.”43  An “Expense” is defined as something being expended to secure a 

benefit.  Simply stated, an expense implies that something of value was received in turn 

for the transfer of some monetary unit.  In the case of the additional cost of a software 

failure, it is inappropriate to assume that something was gained by expending more 

resources, because the resource expense was unplanned.  The consumer gains no 

additional return for the additional fee, but rather he received what he was originally 

expecting to receive for an additional cost.  Economically this is corrupt. 

In the case of software development, a software system is contracted to be 

developed for a specific price.  That price should include all foreseen expenses, 

developmental issues, and forecasted lifecycle costs.  The recipient of the product should 

be safe to assume that the product will be delivered at the agreed upon rate, on time, free 

of defects, and with a reasonable level of assurance of the safety of the product.  It 

perpetuates a great disservice to the software industry when a customer accepts an 

incomplete or defective product and then agrees to make compensatory compensation to 

the developer to correct the developer’s flaw.  Additionally, it robs the process when a 

customer agrees to pay for the research and development of an unproven software 

technique or methodology, or pays to train a developer to do his job.  Such a practice 

would rarely be tolerated in other fields of industry. 

Could a patient imagine first paying to train a doctor to perform for a heart 

surgery, then pay for the surgery, and then finally to have to pay an additional fee when 

the doctor fails to do the surgery properly or in a timely manner?  The patient should be 

given the reasonable expectation that the doctor has been properly trained before being 

presented with the case, and that the doctor would perform the case properly the first time.  

Failure to properly perform such a case would result in the malpractice prosecution and 

disbarment of the doctor from the practice.  In the field of Software Engineering, such 

practices are commonplace. 

                                                                                                                                                 
43 The Merriam-Webster’s Collegiate Dictionary, Tenth Edition, Merriam Webster, Incorporated; 

Springfield, Massachusetts; 1999. 



25 

In the automotive industry, a defective vehicle is recalled and repaired at the 

expense of the developing company.  In 2000, over 39,424,696 vehicles and automotive 

accessories in the United States were recalled for defective components or systems in 

over 250 recalls.44, 45  The owner of the vehicle bears no responsibility for the defective 

product, nor is he required to pay for the required repairs.  This process is only made 

possible by an aggressive legislative effort, government regulation and oversight, and 

through the ability of the consumer to find alternative automobiles if the primary choice 

has demonstrated a history of failure. 

Historically, software customers have not had the luxury of a large selection of 

software products to meet specific high–assurance needs.  Many safety based software 

products are developed real time to meet a specific need of the consumer and are not 

easily re–marketed to other consumers without modification.  The level of modification 

constitutes the difference between properly defined COTS and non–COTS products.  

There are few developers for a consumer to select from that have the specific subject 

matter expertise required for specific projects. 

An increase in Software Safety can only be accomplished through a three–fold 

process of training, supply, and accountability.  Software developers need to properly 

train and educate themselves with the proper techniques and methods for high–assurance 

software development.  The market needs to be expanded to support more competition.  

This may require governmental regulation to disestablish monopolistic practices or 

through grants and benefits for new companies that demonstrate success.  Finally, the 

software developer needs to be held accountable for software failures.  Customers need to 

no longer bear the cost of software failures and poor development techniques.  If a 

software project fails, the developer has to be held liable for the failure. 

                                                                                                                                                 
44 Compilation of various National Highway Transportation Safety Administration Press Releases, 

National Highway Transportation Safety Administration, Department of Transportation; 2000 – 2001. 
45 Note:  The sum reflects the total of all NHTSA Recall Bulletins.  Some vehicles and accessories may 

be counted twice if referenced in separate and unrelated recalls during the annual period.  The actual 
number of vehicles and accessories may be lower. 
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2. NATO Software Engineering Definition 
In 1967, the NATO Science Committee referred to the state of the art of Software 

Engineering as the discipline of “...promoting the establishment of theoretical 

foundations and practical disciplines for software, similar to those found in the 

established branches of engineering.”46  Two years later, NATO refined its definition of 

Software Engineering as “the establishment and use of sound engineering principles in 

order to obtain economically software that is reliable and works efficiently on real 

machines.”47 

                                                                                                                                                 
46 Software Engineering, Report on a conference by the NATO Science Committee, NATO Science 

Committee; 1967. 
47 Naur, Peter; Randall, Brian; Editors; Software Engineering, Report on a conference by the NATO 

Science Committee, NATO Science Committee; January 1969. 
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II. THEORETICAL FOUNDATION 

“Every software error blamed on the computer can be traced to two faults: The first being 
the fact that blame was placed on the computer; and secondly the fact that a human 

developed the error.” 
 

– computer wisdom 
 

Computers, and in turn – software, have unfairly been left to blame for an 

assortment of failures and catastrophes over the last half–decade.  Man depicts computers 

as thinking and self–acting entities capable of taking deliberate or irresponsible actions.  

Users portray computers as a manifestation that can make conscious thought with flaws, 

imperfections, and an ability to disregard commands and exercise free will.  One may 

strike the screen or keyboard in the same way he would a disobedient dog with a rolled 

newspaper with the veiled notion that he taught the computer a lesson.  He might feel that 

the computer would behave better with the next command, without regard to the fact that 

the system will continue to act the same way given the same inputs.  Yes, “to err is 

human, but to really foul things up requires a computer,” developed by a human who was 

unaware or incapable of comprehending the system that he has designed or is now 

operating. 

Recent history has illustrated that software is potentially unsafe when it is 

assigned to control critical systems.  Safety, or a level of “unsafety,” is primarily based 

on probability of a system to prevent or experience a hazardous event, and secondarily 

based on the severity of such an event.  There is no system that can be considered 

failsafe, as there continues to exist the minute probability of failure in all things.  The 

objective of safe software development is to reduce the probability of failure to a level 

acceptable to the developer, client, and society.  The United Kingdom has gone so far as 

to define “safe” as to when the probability of failure has been reduced to a level “as low 

as reasonably practicable.”48  The term reasonably practicable can be judged uniquely for 

                                                                                                                                                 
48 Ship Safety Management System’s Handbook, United Kingdom Ministry of Defense, JSP 430, United 

Kingdom. 
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diverse users in unique circumstances, each circumstance dependent on a distinct series 

of specific indicators, triggers, and consequences. 

From a review of common practices and literature from governmental, 

commercial, private, and academic institutions on the subject matter of Software Safety 

and Software Failure, it can be concluded that there are six inhibiting factors restricting 

the state of the art of software development and failure, including: 

• A failure to realize that there is a problem with the current state of 

Software Safety. 

• A failure to recognize potentially unsafe circumstances in software 

systems. 

• A failure to identify the flaws of the Software Development Process. 

• An inability to quantify flaws, faults, and failures into a measurable value. 

• An inability to qualify the solutions to potential flaws for evaluation and 

efficient rectification. 

• A failure to comprehend the solution to Software Failure. 

There exists a greater maturity within the small circle of safety experts, however 

their practices are not commonly used in mainstream development.  Such a decision is 

based on economic, political, and educational factors that limit the spread and acceptance 

of such practices.  While such subject matter practices provide a strong improvement to 

the state of the art of Software Engineering, their common incorporation is absent outside 

of a small circle of safety experts.  My study will focus its emphasis on the ability to 

quantify and qualify the values of software development, failure, and success.  These 

values can then be expressed in manageable and meaningful units for evaluation of the 

software life–cycle development process with the intent of reducing failure and 

increasing safety. 
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To generate a foundation for the development of a Software Safety Metric, it is 

essential to first define and organize a basis of understanding regarding Software Safety 

and Failure.  To generate this foundation and basis, this chapter is organized into the 

following units: 

1. Philosophy and Interaction:  To best break down the impression that 

software/hardware are self–aware entities and incapable of failure, this 

chapter outlines a discussion on the philosophy of software development 

and the “human” interaction within the development process. 

2. Vocabulary–specific software failure and safety:  Software 

development is a semantics–rich discipline with a multitude of proprietary 

based vocabularies.  These vocabularies do not easily translate or transfer 

to other dialects within engineering fields.  Many international and 

national agencies and standards differ on their interpretation of specific 

phrases of development and safety.  This chapter defines and clarifies the 

vocabulary specific to Software Failure and Safety as it applies to this 

dissertation. 

3. Safety State Definitions:  Software Safety, Failure, and Risk 

Management are commonly misunderstood and misapplied concepts in 

software development.  This chapter defines and clarifies these three terms 

as they directly apply to Software Safety of High Assurance Systems. 

4. Failure and Hazard Flow:  Software Faults, System Failures, and 

Mishaps flow through a software system in a distinct manner.  This 

chapter outlines the flow and transition of faults and failures through a 

system, as well as the measures that capture and arrest faults before they 

propagate. 

5. Relative Works to the State of the Art:  To base the foundation for 

Software Safety Improvement, this chapter makes a review of relevant 
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works in the field of Software Safety and Failure, giving an appraisal of 

previous efforts and standards. 

6. Metrics and Methodologies:  Once this foundation has been introduced 

and established, this chapter outlines the required metrics and 

methodology necessary to manage, denote, and define Software Safety. 

A. DEFINING SOFTWARE SAFETY 

For the purpose of this dissertation, it should be understood that the term Software 

Safety and Software Failure differs from Software Development Risk; Safety focuses on 

the failures of the system as they relate to the occurrence of a hazardous event while 

Software Development Risk primarily focuses on the risks to development and the 

potential for a system to fail to meet development goals.  In the past, the term Software 

Risk and the associated study of Software Risk Management have focused primarily on 

predicting the success of a software project’s development or the risk of the software 

project failing to be completed within planned resource limits.49  Dr. Nogueira focused 

his research on the computation of software risk using a new approach at assessing 

system complexity and volatility.  Additional research has focused on the potential for 

system failures during various states of operation, once the product has been employed.50, 
51 

Within the development environment, software success is judged against a 

comparison of planned and actual schedules, costs, and characteristics.  Software Safety 

is focused on the reduction of unsafe incidents throughout the lifecycle of the system (it 

can be assumed that some systems are capable of hazardous events during development 

should they fail during testing with hazardous elements, fail to meet critical deadlines 

consequently failing to prevent a hazardous event, or fail to be developed at the 

                                                                                                                                                 
49 Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 

Postgraduate School; Monterey, California; September 2000. 
50 Murrah, Michael R.; Luqi; Johnson, Craig S.; Enhancements and Extensions of Formal Models for 

Risk Assessment in Software Projects, Naval Postgraduate School; Monterey, California; 2001. 
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catastrophic loss of expended resources).  Unsafe incidents may be the result of a failure 

of the software system to meet design requirements, an error or shortsightedness in 

system requirements to prevent such an incident, or the reality that such hazards are 

unpreventable – merely manageable.  A system can be determined “safe” when the 

probability of occurrence of a hazardous event has been reduced to some defined 

acceptable level.52  That acceptable level is dependent on the identification of potential 

hazards; the requirements of the system; the necessity or importance of the product; and 

the type, circumstance, and consequences of the failure. 

Safety is not a Boolean value of purely safe or unsafe, but a continuous 

variable that ranges from completely unsafe towards safe 

Individual impressions may have it that a software system is either safe or unsafe, 

depending on its requirements, design, and controls.  In reality, a system progresses 

through various levels of safety depending on its requirements, design, controls, methods 

of operation, potential hazards, and time/state of execution, as well as countless other 

stimuli that could affect the operation and safety of the system, as depicted in Figure 2.  It 

is when these stimuli are analyzed and measured, can an accurate appraisal of system 

safety be made. 

                                                                                                                                                 
51 Musa, John D.; Iannino, Anthony; Okumoto, Kazuhire; Software Reliability, Measurement, Prediction, 

Application, McGraw-Hill Book Company; New York, New York; 1987. 
52 International Standard ISO/CD 8402-1, Quality Concepts and Terminology Part One: Generic Terms 

and Definitions, International Organization for Standardization; December 1990. 
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Figure 2 Dual Impressions of Safety 

There are few correlations to be drawn between Software Development Risk and 

Software Safety as the subjects are only indirectly related.  One discipline deals with the 

potential to complete the product while the second discipline deals with the ability to 

prevent the system from taking a hazardous action.  Software Safety, a child of the 

greater System Safety practice, includes the “application of engineering and management 

principles, criteria, and techniques to optimize all aspects of safety within the constraints 

of operational effectiveness, time, and cost through all phases of the system lifecycle.”53 

For the purpose of this study, the term Software Risk is defined as the threat to 

proper system operation that could potentially result in a hazardous event and 

consequently reducing the level of Software Safety.  The probability for such a hazardous 

event ranges from zero to one, expressed quantitatively as [ 0 ≤ PH ≤ 1 ].  In an optimal 

case, PH would be zero.  Qualitatively, it would be optimal for software risk to be low or 

none.  The process of deriving and defining the qualitative and quantitative measures will 

be defined later in Chapter V.  The term Software Risk Management refers to the 

management of the risks to Software Safety.  The term Software Development Risk 

denotes to the risks to successful software development, as quantified by the ability to 

                                                                                                                                                 
53 MIL-STD-882C System Safety Program Requirements, Department of Defense; 19 January 1993. 
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meet project requirements within acceptable limits regardless of the potential for or 

incident of hazardous events during the operation of the software. 

The use of automated systems have become essential to the control and safety of 

critical applications such as nuclear power plants, medical devices, aircraft, chemical 

plants, and national defense systems.  The level of sophistication required to maintain 

these systems is far beyond the capability of an unaided human.  The processing speed 

and logic control of today’s system enables a level of performance far beyond that of 

manual systems.  Logic control can guarantee some level of safety, depending on implied 

reliability, system requirements, and design constraints.  When applied, Software Safety 

assures a systematic and logical approach to identifying, classifying, categorizing, 

controlling safety, and the occurrence of hazardous events. 

B. THE PHILOSOPHY OF SOFTWARE DEVELOPMENT 

In 1851, in his historical writing of “Cellular Pathology,”54  Rudolf Virchow 

noted that biological cells are neither good nor bad, yet that they merely carry out the role 

for which they were anatomically designed.55   Software is characteristically like an 

anatomical cell as it merely carries out the function for which it was programmed, even if 

that function is flawed by design. 

1. Software as Intelligence 

Software is Stupid. 

Before one can develop a safe software system, they must understand and admit, 

“Software is Stupid.”  They must also admit that software is obedient, to the point of 

blind obedience to any task, order, or command that may be put upon it.  A Software 

System’s intellect originates from the developer himself.  It is from the developer’s ideas 

and logic that the system acquires its basis of operation.  Software logic can be derived  
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from the adaptation of previous systems, failures, and successes.  While this adaptation is 

not always guaranteed, it can be assured that the system is based primarily on the present 

representation of its developer. 

The psychological personality of the developer, in harmony with the individual’s 

discipline and professional knowledge, determines the true nature of the software system, 

its logic, its flow, and its character.  Every software system has a distinct personality, as 

unique and as different as the fingerprints on a human being.  This uniqueness has bred a 

myriad of logic patterns and commands capable of accomplishing essentially identical 

tasks, each set varying in complexity, size, and potential for failure.  As noted in Table 2 

below, it is possible to execute any one of three independent functions, each capable of 

selecting an item from a given list.  The size of the function (lines of code) is based on 

the programming code language, the function chosen, and the number of selections in the 

data list.  The choice of which function to use depends greatly on the developer’s ability 

to program, his interpretation of the development requirements, and personal preference 

to one style over the next. 

Function Complexity Lines of Code 
IF THEN ELSE 

END Simple ((S * 2) + 2) Lines of Code 

CASE SELECT Moderate (S + 3) Lines of Code 
ASSIGNED 

ARRAY Complex 5 Lines of Code 

Where as: 
 S – as Number of Selections 

  

Table 2 Code Complexity and Size Comparison. 

Despite the notion that computers are intelligent, that impression delicately hinges 

on the software system that controls it.  The software system, and its corresponding level 

of safety, is likewise delicate, reliant on the developers and methodologies that gave it 

life. 

                                                                                                                                                 
54 Burke, James; The Pinball Effect, Little, Brown and Co; 1996. 
55 Note:  Rudolf Virchow is credited for originating the quote “Prevention is better than cure.” 
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The safety of software does not hinge solely on the software concept itself, but 

on the individuals who wrote it and their own conception of design, logic, and 

assurance. 

Safety is reliant on the method and completeness of the development, the 

comprehension and interpretation of the requirements, and the training and discipline of 

the developers.  Until such time as software reaches self–awareness and can think for 

itself; until it becomes able to simply write code; not because it is commanded to, but 

because it is aware of the rationale for doing so and can evaluate how well a design meets 

that rationale, can we never forget that “Software is Stupid”. 

It has been mentioned that if you gave a thousand monkeys each a piano, 

eventually one will play Mozart; or each a typewriter, one will eventually write the 

great American novel. 

The problem is not that you will have to wait an eternity to hear sweet music or to 

be moved by fine literature, it is that you will first have to listen in perpetuity to the 

wretched sounds of a thousand monkeys banging on ivory, and sift through a mountain of 

paper to find one discernible word.  There are those who still utilize the Mongolian Horde 

Technique56 to Software Development and have an army of “Monkeys” pounding code to 

keyboard.  Software cannot be developed in an assembly line fashion with individuals 

simply banging code into place and expect it to be safe.  Safety requires the development 

of software with precision methods by trained individuals whose ultimate goal is to 

design a product with an acceptable degree of defects or flaws.  In high–assurance 

systems, such failure is not tolerable and one cannot afford the quality of monkeys to 

develop such a solution.  Software Safety requires the discipline of development using 

formal models and methods, the concentrated evaluation and scrutinization of the product 

through its entire lifecycle, and the absolute adherence to accepted standards and doctrine. 

                                                                                                                                                 
56 Analogous to the Mongolian Horde technique of warfare in which the armies of Genghis Khan would 

amass an overwhelming force of untrained warriors against a smaller enemy and conquer them 
through disproportional numbers. 
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Software is not capable of thinking for itself.  It requires the thought of the 

developer to direct its actions.  Once directed, it will function as commanded, operating 

within the designed parameters that were established at its inception and crashing where 

the developer failed to prevent a fault.  If it fails, it is because the developer did not 

validate the functionality of the system.  If it is unsafe, it is because the developer did not 

assure the needed protections within the system. 

2. The Motivation to Build 
Man has had a dream and obsession to create and mold something out of nothing.  

It is something “God–Like” in nature with biblical reference to the Genesis of this world.  

“In six days, the Lord created the Earth from the void of space and rested on the 

seventh.”57  Christianity teaches its disciples that His creation was perfect and without 

fault.  Many individuals attempt to emulate this form of creation by developing a piece of 

software without fault or intentional blemish from only a concept and idea.  Companies 

have self–proclaimed their divine ability to create with registered trademarks and names 

such as Godlike58, Perfect59, Divine60, Immortal61, and Genesis62. 

It is the software developer’s ego that demands that he create the greatest system, 

in the same motivation that man strives to build the tallest building63, race the fastest car64, 

                                                                                                                                                 
57 Holy Bible, King James Version., Genesis Chapters 1, 2:1-3. 
58 Godlike Technologies, Provider of system administration and MUD server development; Sunnyvale, 

California; est. 1991.. 
59 Perfect Commerce, Inc., Provider of strategic e-sourcing and decision support; Palo Alto, California; 

est. 1999. 
60 Divine, Inc., Provider of web-based software solutions and management applications; Chicago, 

Illinois, est. 1999. 
61 Immortal, Inc., Provider of dedicated server and backup resources to small and medium size 

companies, Las Vegas, Nevada; est. 1997. 
62 Genesis Computer Corporation, Provider of network and host based security and management 

solutions; est. 1999. 
63 The tallest structure is the CN Tower, Toronto, Canada, at a height of 1,815 ft 5 in.  The second 

largest buildings are the twin towers of Associates Petronas Towers I and II, Kuala Lumpur, Malaysia 
at 1,483 ft.  Source, Guinness World Records Limited; London, England; 2001. 

64 The fastest land vehicle is the Thrust SSC at 763.005 MPH, set by Andy Green on 15 October 1997 in 
the Black Rock Desert, Nevada, USA.  Source, Guinness World Records Limited; London, England; 
2001. 
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or dive to the deepest depth of the ocean65.  The result of his success would put him on 

the same level as a deity, while his failure might be blamed on the inadequacy of the 

operating system rather then on his own inability.  In this rush to create a system, many 

developers overlook basic common sense approaches and methods for more untested and 

unproven options.  The engineer’s motivations become so wrapped up in ego gratification 

and social power accumulation66 that he fails to heed the lessons of previous failures or 

warnings of his co–workers.67   They ignore the basic philosophy of KISS (Keep It 

Simple, Stupid) and attempt to create not only a new system, but also a revolutionary new 

logic to empower that system.  Many failures can be related to development with untested 

and unproven “revolutionary new” tools that fail when delivered to the customer.  In 

reality, the ego of the developer would be better defined by the value his work provides 

to customers; rather then how impressed he is with his own notion of cleverness. 

Software serves as a mirror to the mind of the developers. 

Software reflects the psychological perspective and philosophy of the engineers 

who gave it life.  It absorbs the personality, the flavor, and even the faults of the hands 

that mold it.  “The potter is the master over the clay pot.  Yet the pot will never exceed 

the capability of the potter.”68  This analogy applies equally of the potter as to the 

Software Engineer.  Essentially, the engineer cannot get more capability out of his system 

then his own mentality permits, and in parallel, he cannot make the computer accomplish 

what he first did not in himself conceive.  His abilities and that of his system are limited 

only by his own intellect.  It is when he attempts to reach beyond the limits of that 

intellect that he introduces faults.  While he may have the greatest of logic, if his intellect 

does not permit the thorough inspection of his efforts, he is bound to overlook even the 

most blatant of faults and jeopardize his entire creation to catastrophe. 

                                                                                                                                                 
65 The deepest diving vehicle is the manned bathyscaphe Trieste, at a depth of 35,8000 ft, in the 

Challenger Deep off the island of Guam, on 23 January 1960.  Source, Naval History Center, 
Department of the Navy; 1999. 

66 Weinberg, G.; The Psychology of Computer Programming, Von Nostrand Reinhold Co.; New York, 
New York; 1971. 
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Man will build, and in his folly, will attempt to reach for the stars without 

comprehending that the star is nothing more then just a flaming ball of gas.  Without 

proper oversight and supervision, careless Software Engineers will corrupt even the most 

reliable of programs by attempting to build their own Tower of Babel.  Software 

Engineers need to be motivated to design and build new systems, be given the freedom of 

expression, the faculty to explore, and the benefit of credit and recognition.  Along with 

that freedom comes the understanding that his product progression must be controlled, 

checked, supervised, and regulated to ensure that it complies with the actual requirements 

and meets the standards of a high–assurance system.  Presented, is a method for 

permitting that freedom of expression while ensuring compliance with standards and 

requirements. 

                                                                                                                                                 
67 Sawyer, S; Guian, P. J.; Software Development: Processes and Performance, IBM System Journal, 

vol. 37, num. 4, IBM; 01 May 1998. 
68 Wood, Larry; Personal writings on the Philosophy of Software; 30 August 1996. 
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C. THE ANATOMY OF FAILURE 

 

Figure 3 Software Failure Flow 

Software Failure, as with Software Development, has its own terms and 

vocabulary to define the discipline.  Software Failure can be depicted as a chain of events 

and actions whose outcome could eventually lead to the destruction or functional loss of a 

system.  To understand how to break the chain of failure, it is first important to 

understand the links that make up the chain, from the basic flaw to the culmination of the 

actual failure.  Figure 3 represents a personal depiction of a Software Failure Flow, based 

on the dissertation’s definition of failure elements.  The resultant depiction serves as a 

contribution of the dissertation. 

The definitions introduced in this study are a re–tailoring of existing popular 

definitions with an emphasis on safety, as well as an introduction of new terms and 

definitions designed to satisfy the existing absence in Software Safety Engineering.  

These terms are intended to fulfill the unique language requirements placed on the 

development of high–assurance system.  The introduced terms are not all encompassing; 

yet establish a foundation for the induction of further terms as necessary to meet the 

semantic needs of software development. 
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In the simplest of terms, software fails because the system was unable or 

incapable of preventing an uncommanded action or undesirable output, the potential 

failure was never recognized, or a fault in the design actually induced such an output or 

action.  The question to software development lies with why the system was unable or 

incapable of preventing such an action.  Optimally, a system would be designed to 

control and contain every possible fault and failure that could potentially occur, or be 

developed with sufficient redundancy or controls to mask or conceal the underlying fault.  

To best understand why software fails and how failure can be prevented, it is essential to 

understand and agree upon a convention for the breakdown and categorization of 

Software Failure and Software Safety terms and definitions. 

Software failure is formally defined as the state in which a system has failed to 

execute or function per the defined requirements due to a design fault;69 or where failures 

are a result of incomplete, ambiguous, erroneous, or missing requirements leading to an 

unforeseen or undesirable event.  For the purpose of this dissertation, the following Type 

Failure List in Table 3 has been devised to characterize software failures by the indicators 

or actions that the system may take preceding to or during the failure, as: 

• TYPE 1 When a system executes an uncommanded action. 
• TYPE 2 When a system executes an inappropriate action for a specific 

command. 
• TYPE 3 When a system fails to execute a required action for a specific 

command. 
• TYPE 4 When a system fails to function. 

Table 3 Failure Types List 

The Failure Type List introduced in this study is not inclusive of all potential types of 

failures  that  could  be  experienced,  but  gives  a  plausible  baseline  for   establishing  
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failure types.  Additional failure types could be appended to the current list (i.e., TYPE 5, 

6, 7…) or included as a subordinate failure to an existing failure (i.e. TYPE 1A, 2A, 

2B…) 

The Failure Type Numeric is used for simplification and reference later in the 

dissertation.  A TYPE 1 Failure is characterized by the system executing an 

uncommanded action while the system is in and out of operation.  A TYPE 1 Failure is 

the only type of failure that can occur when the system is not in operation, as it would be 

expected that the system would not receive any commands when not in operation.  The 

absence of a command uniquely sets this type apart from other failures.  This type of 

failure is not related to any command or provocation, and occurs outside of the system 

requirements.  This failure may be triggered by the state of the system or by an input not 

related to a command. 

A TYPE 2 Failure is characterized by the system executing an inappropriate 

action for a specific command during system operation.  When a user or procedure 

generates a command to the system, it should be expected that the system would respond 

with a predetermined series of actions or responses.  In the case of a TYPE 2 Failure, the 

system executed a false response to a system command.  It should be noted that the 

system attempted to execute a response to the command, though be it incorrect.  If the 

system cannot execute any action for a command, the system may be experiencing a 

TYPE 3 Failure. 

In a TYPE 3 Failure, the system could not or did not execute an action for a given 

command.  A TYPE 3 Failure differs from a TYPE 2 Failure by the fact that no action 

was taken for the command, instead of the system executing an inappropriate action.  A 

TYPE 4 Failure occurs when the system fails to respond or execute any action for all 

commands, essentially with the system “locking–up”.  A TYPE 4 Failure is a special case  

 

                                                                                                                                                 
69 Computer Science Dictionary, Software Engineering Terms, CRC Press; ver. 4.2; 13 July 1999. 
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of the TYPE 3 Failure, where in a TYPE 3 Failure concerns the inability to execute a 

single command a TYPE 4 Failure concerns the inability to execute a preponderance of 

the system’s commands. 

Software failure does not always result in the complete shutdown of a system.  

Rather, failure can range from the single undetected anomaly to a cascading failure and 

eventual catastrophic collapse of a system’s functionality.  This level of failure can 

eventually, but not necessarily, lead to a system malfunction.  Even an undetected 

anomaly is still a form of a software malfunction as the system continues to operate with 

a lingering failure in the background.  Optimally these anomalies would work themselves 

out and the system continues to function.  The fact still exists that the system executed a 

function, regardless of how perceptible, that was undesired and uncommanded. 

To understand System Malfunctions, each must first be broken down into two 

basic phases or subcategories – system faults and system failures.  As depicted in Figure 

3, a fault is categorized as an object within a system which, when acted upon or triggered, 

can reduce a system’s ability to perform a required function, assuming the complete 

availability of all necessary resources.  A failure is the actual inability of a system to 

perform a required function, or the departure of a system from its intended behavior as 

specified in the requirements.  A system can contain a fault that may eventually, but not 

necessarily, lead to a failure.  The failure will result in a malfunction of the system, which 

in turn will create a corresponding hazard.  Additional components of Figure 3 will be 

addressed through this chapter of the dissertation. 

1. Software Flaws 
Within the semantic chain that defines Software Failure, the bottom of that chain 

is anchored by the term “flaw.”  A flaw is simply defined as “a feature that mars the 

perfection”70 or rather “an imperfection or weakness and especially one that detracts from 

                                                                                                                                                 
70 The Random House Dictionary of the English Language – The Unabridged Edition, Random House, 

Inc.; New York, New York; 1980, 1998. 
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the whole or hinders effectiveness.”71  While attempting to define the terms of Software 

Failure, this research has revealed an obvious lack of formal definitions for the discipline, 

making it necessary to coalesce or combine existing definitions and usage phrases to 

apply to Software Failure.  For the purpose of this discipline, a “flaw” should be 

understood as “a specific item that detracts from the operation or effectiveness of the 

software system without necessarily resulting in a failure or loss of operability.”  A flaw 

may not affect the ability of the system to execute its required functions, but can cause a 

noticeable deterioration in the system’s performance or aesthetic quality of the product.  

Should a flaw ever reach the ability to cause a failure, it ceases to be referred to as a flaw 

and becomes a fault. 

Some documenting resources, editorials, and publications incorrectly relate a flaw 

to the failure of a system.  For example, a report from NASA was quoted as: 

An in–depth review of NASA's Mars exploration program, released today, 
found significant flaws in formulation and execution led to the failures of 
recent missions, and provides recommendations for future exploration of 
Mars.72 

It should be understood that a flaw does not lead to the failure of the system, 

while a fault serves as the true basis for a failure. 

A flaw should be understood as minor in nature and does not affect the overall 

ability of the system to accomplish its requirements.  Most flaws might cause discomfort, 

inconvenience, or a reduction in efficiency, but not a reduction in efficiency below the 

specified requirements of operation.  In the case of a disk drive, an event might reduce 

the speed of the data transfer rate, but as long as the data rate does not fall below the 

specified required transfer rate, the error would be classified as a flaw.  If the transfer rate 

did fall below the required level, if even for a moment, then the event would be 

categorized as a fault, which led to a failure of the system’s ability to meet requirements. 

                                                                                                                                                 
71 The Merriam-Webster Collegiate Dictionary, Merriam-Webster, Inc.; Springfield, Massachusetts; 

2001. 
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In most cases, flaws are subtle, almost indiscernible elements in the operation of 

the system, and their execution is accepted by users as a quirk or idiosyncrasy of normal 

operation.  This does not imply tolerance of a flaw or infer that some level of flaws 

should be accepted in the normal development of a system.  A flaw is still an 

imperfection that should be investigated, combated, and controlled like any other system 

irregularity.  By definition, a flaw does not lead to a failure of the system.  While a flaw 

does not directly contribute to the failure of a system, its existence may serve as an 

indicator of existing imperfections and faults within the system, those imperfections 

eventually surfacing as a failure.  Should an event once defined as a flaw lead to a failure 

then the event would be redefined as a fault.  If a lack of care caused the creation of flaws, 

then the same lack of care might have produced the same proportion of faults.  The same 

discipline that should be used to counter a fatal error should be used to prevent even the 

smallest of flaws, resource dependent.  It is recognized that it is not economically feasible 

to remove all flaws within a system, but that their presence may ultimately reduce the 

perceived value of the product (Economics). 

2. Software Faults 
Where Software Failure denotes an action performed by a system, Software 

Faults denote the object that induces the action.  Faults are the objects within the system 

that contains an error in logic, that when triggered could induce a failure.  Errors in logic 

can be the result of errors in system requirements that fail to consider the proper 

operation of the system, implementation errors in which the system is operated in a 

manner for which it was unintended or controlled, or development faults in which the 

system’s logic is erroneously programmed.  The term “Fault” has been synonymously 

used with the term “Bug” to define an error within a system.73  As stated previously, a 

fault can reside in the system indefinitely without ever inducing a failure until initiated by 

a trigger, in the same way that a firework can remain safe and stable until someone 

                                                                                                                                                 
72 Wilhide, Peggy; Mars Program Assessment Report Outlines Route To Success - Release:  00-46, 

Headquarters, Washington, DC, 28 March 2000. 
73 Nesi, P.; Computer Science Dictionary, Software Engineering Terms, CRC Press; 13 July 1999, 

http://hpcn.dsi.unifi.it/~dictionary. 
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applies a spark to the fuse.  Faults are exclusively related as Action Based Failures, as 

they are logic based and internal to the system.  System faults can be further broken down 

into two subcategories: 

• First, to faults related to the internal deficiencies of a system with 

acceptable inputs, which shall be referred to as Reactionary Faults, 

• Secondly, to a system’s inability to function with incorrect or erroneous 

inputs, referred to as Handling Faults. 

a. Reactionary Type Faults 
In an optimal system, an input would be received, processed, and executed 

in compliance with the requirements of that particular module.  For reactionary type 

faults, it is assumed that that input was correctly formatted and within the acceptable 

range for the given requirement.  The system is expected to take action or react to the 

input through a predefined set of responses, based on the value of the input.  If the input 

is within the proper tolerances and the system is unable to execute its requirements, then 

it would be considered a Reactionary Type Fault.  The term “Reactionary” comes from 

the system’s design to react to commands and inputs.  The fault is not in the input, but in 

the design of the system and its inability to take appropriate action for the input.  In the 

case of such a fault, the trigger would be the actual input.  The combination of the trigger 

and fault then result in a failure within the particular module.  These triggers and faults 

could have their basis in requirement, implementation, and/or programming logic. 

An example of a Reactionary Type Fault could be found within an 

automobile cruise control system.  Let the automobile be cruising at below the set cruise 

speed.  The system will attempt to accelerate the automobile towards the desired speed, 

comparing its current velocity against the desired speed.  As the speed of the automobile 

reaches the desired speed, the cruise system should disengage the acceleration sequence.  

If the system continues to accelerate past the desired speed with no change in its status, 

has received the accurate speed signal of the vehicle, and is unable to process the fact that 

the automobile has exceeded the required speed then the system would have experienced 
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a Reactionary Fault.  In this particular case, the Reactionary Fault is characterized by the 

inaction of the system to the acceptable input – a TYPE 3 failure74.  If the automobile 

would have reached the desired speed and then commenced to immediately decelerate, 

then the Reactionary Fault would be characterized by the incorrect action of the system to 

the acceptable input – a TYPE 2 failure. 

b. Handling Type Faults 
Despite the best of system designs, it can never be assumed that a system 

would be without erroneous entries or parameters out of the normal bounds of the system.  

To effectively manage such a system, developers must design checks, filters, and controls 

within the system to handle such entries.  Optimally, these filters would catch erroneous 

entries and execute a series of pre–specified procedures or functions based on the entry 

value.  When the system is unable to detect the erroneous entry, is incapable of executing 

the applicable handling procedure, or the handling procedure itself experienced a fault 

related to its execution, then the system would have experienced a Handling Type Fault.  

If the system recognizes the erroneous entry and attempts to handle the error, and then 

fails within this secondary execution, then such a fault would still be regarded as a 

Handling Type Fault because it is isolated by the systems inability to “Handle” the error.  

As with the Reactionary Type Fault, the fault is not in the input but in the design of the 

system and its inability to take corrective action for the erroneous input.  In the case of 

such a fault, the trigger would be the erroneous input.  The combination of the trigger and 

fault then result a failure within the particular module. 

An example of a Handling Type Fault could be found within an account 

data entry system where the user would be required to make keyboard entries.  Let the 

account data entry system require the Account Balance Value of the current account, in 

numeric format.  Assume the user has the ability to make alpha–numeric–symbolic 

entries from a keyboard.  If the user attempts to make an alpha–symbolic entry for the 

numeric requirement, the system should handle the action with an appropriate response, 

                                                                                                                                                 
74 See Table 3 Failure Types List 
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either by disregarding the entry, displaying an error prompt, or other appropriate action.  

If the system does not handle the erroneous input and subsequently attempts to execute a 

mathematical function, then the system would experience an incompatibility error and 

halt, as the string value would be incompatible with the numeric requirement, hence a 

Handling Type Fault.  In this particular case, then the Handling Type Fault is 

characterized by the system failing to handle the erroneous input by permitting the 

mathematical function – a TYPE 3 failure.  Depending on the design of the system, the 

fact that each keystroke was accepted would be classified as a TYPE 2 failure.  The fact 

that the erroneous character was not filtered would constitute a TYPE 3 failure, where in 

both cases it was inappropriate for the alpha–symbolic character to be permitted into the 

system. 

3. Software Failure 
Failure, in terms of Software and System Failures are defined as “the inability of a 

system or component to perform its required functions within specified performance 

requirements.”75  To further delineate failure types, this study introduces two additional 

failure categories, based on the source of the initiator or fault: 

• Resource Based Failures (RBF): Failures associated with the 

uncommanded lack of external resources and assets.  Resource Based 

Failures are generally externally based to the logic of the system and may 

or may not be software based. 

• Action Based Failures (ABF): Failures associated with an internal fault 

and associated triggering actions.  Action Based Failures contain logic or 

software–based faults that can remain dormant until initiated by a single or 

series of triggering actions or events. 

                                                                                                                                                 
75 Software Engineering, IEEE Standard Glossary of Software Engineering Terminology, IEEE Standard 

610.12, Institute of Electrical and Electronics Engineers, Inc.; 1990, 1991. 
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a. Resource Based Failures 
Resource Based Failures are usually associated with the hardware and 

external resources required to support the system’s logic operation.  System hardware 

includes components directly connected to the unit to include the unit processor or CPU, 

mass storage devices, monitor, or Graphical User Interface (GUI).  External resources 

include the electrical power supply, input and output resources and peripherals such as 

printers and transmission mediums, memory partitions to support operation, and 

manipulated control hardware directly controlled by the system such as robotic arms, and 

mechanical drive systems.  RBFs are usually triggered by the absence or failure of an 

associated resource and are very difficult if not impossible to mask, as the resource 

usually serves as the functional input or output to the system.  In cases of memory failure 

or overrun, secondary support logic may fail to properly partition and manage system 

memory beyond the logic requirements of the primary system.  In specific cases, error 

handlers and controls can trap the absence of a resource and take pre–specified actions 

such as reverting to a backup system, prompting the user for an alternative or redundant 

resource, or by displaying a BIT (Built In Test) indication of the fault.  In a worst case, 

the absence of the resource would result in the complete failure of the system, such as the 

loss of electrical power or destruction of the CPU with no redundant backup. 

In High–Assurance Systems, RBFs are usually prevented by the inclusion 

of redundant systems such as an Uninterrupted Power Supply (UPS) system for backup 

power, or parallel lines of communication capable of providing continuous data transfer.  

Factors such as cost, feasibility, or physical limitations can prevent the inclusion of 

acceptable redundant or failsafe control systems.  In the most catastrophic of failures, 

redundant mechanisms may be destroyed or disabled along with the primary system.  In 

the case of space vehicles, the loss of a heat shield would reduce a vehicle’s ability to 

withstand the temperature extremes of space flight or protect its sensitive components 

during planetary reentry.  As the vehicle passes through the atmosphere, vulnerable 

telemetry sensing instruments could be damaged which would reduce the craft’s ability to 

control its decent.  Without a controlled descent, the vehicle and all redundant systems 

would be destroyed during reentry or upon impact with the planetary surface. 
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Despite the best system development practices, the loss of a critical system 

resource is extremely difficult to prevent.  In the study of Software Failure, system 

resources must be evaluated and measured for their vulnerabilities, potential hazardous 

effects of the system, and the system’s ability to protect against the hazardous event.  A 

factor of Software Safety can then be based on the results of the measures and 

evaluations. 

b. Action Based Failures 
While Resource Based Failures are associated with the hardware and 

external resources, Action Based Failures are exclusively associated with the software 

side of the system.  An ABF requires the combination of a fault and its associated trigger 

to initiate the undesirable action.  Faults can include a flaw in logic and code design, a 

misinterpretation of system requirements, or a defect in the language compiler or code 

generator.  A fault can lie dormant for the entire life of the system and never surface 

unless the specific trigger initiates the event.  Triggers can include user inputs to the 

system, incompatible outputs and communications from system modules, miscalculation 

from one function or procedure to the next, or a propagated flaw compounded from one 

action to the next.  Error handlers and filters can be designed to trap or prevent most 

erroneous inputs or records.  In the case of ABF, a filter, control, or error handler is an 

internal function designed to prevent a specific hazard or undesirable action.  The 

procedure is designed to prevent a known action, initiated by the trigger, handling the 

error, and thereby preventing the failure. 

In High–Assurance Systems, these controls, error handlers, or filters are 

designed to capture a specific trigger or even a range of triggers, depending on their 

design.  Once captured, the error handler must take appropriate action by either 

prompting the system for another input with the intention that the second input will pass 

where the first had failed, or by halting the operation of the system in such a fashion as to 

not induce a secondary failure.  The primary purpose of a control, error handler, or filter 

is to prevent the trigger from ever reaching the fault. 
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A common error handler might be one to prevent against a system 

dividing by zero; without it the system would fall into an infinite mathematical loop, as 

the division of anything by zero would resolve towards infinity.  An error handler might 

add a predetermined minute value to the zero to permit the division or it might simply 

exit the procedure altogether, depending on the desired results and implications of each 

action.  A simplistic error handler is easy to write and can filter or capture many ABFs, 

while it is extremely difficult to write an error handler that can prevent the creation of the 

faulty input from its source.  Such prevention can only be accomplished through an 

output filter that conforms to a predetermined set of output requirements, including 

content and format. 

It is possible for a failure, based on its trigger and fault, to be categorized 

as both an Action and Resource Based Failure.  In the case of a Memory Overflow, 

depending on the triggers and reactions of the system, such a failure can be classified as 

either an Action Based or Resource Based Failure.  Should the failure occur due to a lack 

of physical memory, the failure could be assumed as a Resource Based failure of the 

operating hardware platform.  Should the failure occur due to a fault of logic control of 

the physical memory, the failure could be assumed as an Action Based Failure.  Memory 

Overflows may exhibit characteristics of both Resource and Action Based Failures as 

adding additional physical memory and revising the memory logic controls could 

mitigate the fault. 

4. Software Malfunctions 
The term Malfunction is derived from the French term mal, meaning “bad” or 

“wrongful”; and the self–defined Latin word of function to create an item that “functions 

imperfectly or badly, or fails to operate normally.” 76   Upon the software system 

experiencing a failure, the system’s ability to operate and meet design requirements may 

be degraded.  The level to which the system is degraded will determine the type and 

extent of the malfunction as well as the system’s ability to counter the malfunction to 

                                                                                                                                                 
76 The Merriam-Webster Collegiate Dictionary, Merriam-Webster, Inc.; Springfield, Massachusetts; 

2001. 
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prevent a hazard.  As the definition states, a malfunction is the condition wherein the 

system functions imperfectly or fails to function at all.  A malfunction is not defined by 

the failure itself, but rather by the fact that the system now fails to operate.  The term 

malfunction is a very general term, referring to the operability of the entire system and 

not to a specific component. 

Optimally, a system would be developed that could sustain the failure of a 

specific component, while not experiencing a system malfunction.  This sustainability 

could be accomplished by the use of redundant systems, overrides, or checks and 

balances that could counter the effects of the failure.  If the failure could be masked or 

compensated for in some way that it does not affect the performance of the system, then 

the system would not be considered to have suffered a malfunction.  The severity of a 

malfunction is primarily judged by the observation and perspective of the user and his 

perceived inability to utilize the system.  Many systems may experience a failure in 

operation, but the failure is so minute in scale to be indiscernible to the user. 

A Software Malfunction should be characterized in terms of what has failed to 

function properly rather then in terms of the actual failure.  One would not say that the 

Mars Climate Orbiter experienced a Mathematical Malfunction because of the metric 

conversion error, but rather that there was a fault in the mathematics logic of the 

trajectory module.  The format of database entries, triggered by the planetary entry 

evolution, resulted in a failure to accurately report the vehicle’s position (See Chapter 

I.A).  The vehicle experienced a failure to compute its position properly, resulting in a 

malfunction in the trajectory module.  The trajectory module could not relate the 

erroneous position data; the database entry formats were incompatible; and the system 

logic was misinterpreted from development requirements.  The combination of the three 

failures resulted in the system malfunction. 
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5. Software Hazards and Mishaps 
Time and technology have ensured and encouraged software–based systems to 

increase in complexity and reduce their reliance on human intervention for logic and 

decision–making.  This greater complexity and absence of human intervention has 

increased the likelihood of hazardous actions.  The increased proliferation of such 

systems additionally increases the general number of hazardous incidents. 

A Software Hazard is the potential occurrence of an undesirable action or event 

that the software based system may execute due to a malfunction or instance of failure.  

The next step in this logical progression is the Mishap – defined as the occurrence of 

an unplanned event or series of events and action that results in death, injury, or 

damage to or loss of functionality of equipment, property, or otherwise reducing the 

worth of the system77. 

A software system is required to execute a set of predetermined logic functions 

and procedures based on the system’s inputs and interactions.  When the system fails to 

properly execute its functions, it has malfunctioned.  Due to the external reliance upon 

that malfunctioned system, there is a consequence for the failure.  Hazards are judged or 

measured by the cost of the action or event in terms of a tangible or intangible value, but 

noting that most intangible values later relate to a tangible value.  Tangible values include 

the loss of real economic worth to the developer, monetary compensation to the consumer 

or damaged person for the failure, the loss of human life, or the loss of physical property.  

Intangible values such as trust, confidence, and reliability later affect the economic worth 

to the developer or the customer who may rely on the system. 

Hazards can be grouped into three categories, based on states of the system at the 

times for which they occur, namely: 

                                                                                                                                                 
77 Attributed to NASA – STD – 8719.13A, Software Safety, NASA Technical Standard, National 

Aeronautics and Space Administration; 15 September 1997. 
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• Hazards that occur when the system fails to function correctly. 

• Hazards that occur when the system fails to function. 

• Hazards that occur when the system functions correctly 

Traditionally, we appreciate the fact that a hazard may occur when a safety–

critical system fails to function correctly, given that the system’s function was to control 

or prevent the occurrence of a hazardous event.  Additionally, it is recognized that a 

hazard may occur when the system fails to function in its entirety since the lack of 

functionality equates to a lack of hazard control.  In safety–critical systems, the existence 

of a potential hazardous event grants some probability that the event may occur despite 

the operation of the system.  In some cases, despite attempts by the system to prevent 

such an event, it is possible that a hazardous event could occur during the normal course 

of operation. 

Software Safety is characterized by reducing the number or scope of hazardous 

events or mishaps to a level that is economically, socially, and strategically acceptable.  It 

is economically infeasible to ensure that a high–assurance system will have no defects 

and will equally have no failures.  Some acceptable margin must exist and be agreed 

upon as a goal towards system development.  “Bean Counters” constantly measure the 

economic implications of a failure, the probability of that failure, and the cost to reduce 

or remove the likelihood of that failure.  It is not economically justified to spend ten 

million dollars to repair a fault that could damage the manufacture of a one–dollar profit 

component on an assembly line, unless the sum of all of the damages and repercussions 

might exceeded the total cost of the repair.  If the likelihood was sufficiently low that a 

failure would damage an equitable number of components, then production may continue 

as scheduled. 

Socially acceptable levels of Software Hazards are emotionally driven and 

charged with debate and question.  The failure of a fire control system may result in the 

loss of human life or limb, or a flawed voting system might destroy the confidence of a 
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nation in the electoral process.  The tolerable level of that hazard depends on the specific 

circumstances of the time and situation.  In wartime, the loss of human life may be 

acceptable to a certain degree, as long as it can be countered by some greater degree of 

success.  Despite the burdens of war, our society continues to demonstrate a great 

intolerance for the loss of human life and have condemned systems that have resulted in 

such loss, even in cases where the system provided some level of benefit.78 

Depending on the development environment, the demand for the product, and the 

anticipated uses of the system, some level of Software Hazards are expected and 

acceptable.  In the case of the Patriot Missile Battery, the missile defense system had a 

concealed fault that was not triggered in its intended configuration as an anti–aircraft 

system.  The fault was a rounding error that multiplied over time and was never revealed 

as a factor against slower moving targets.  When the Battery was reconfigured against 

faster moving ballistic missiles, the rounding error became a greater factor and lowered 

the system’s ability to accurately track and engage targets.  Due to the strategic demands 

of the system and the “fog of war,” a decision was made to utilize a software system that 

was untested for its new configuration, with the manufactures and users aware that there 

was questionable risk and potential hazards.  To improve the level of success and reduce 

the hazard of a missile getting through the battery’s screen, multiple layers of batteries 

were set up in the theater of operation. 

6. Controls of Unsafe Elements 
Software Systems, due to various external triggers and design factors, stand at risk 

to experience a failure during various stages of their lifecycle.  The ability to prevent, 

handle, or mitigate this failure to prevent a malfunction is referred to as a control – 

meaning to control the system’s functionality to within acceptable bounds should the 

functionality deviate. 

                                                                                                                                                 
78 See APPENDIX B.4 – 

PATRIOT MISSILE FAILS TO ENGAGE SCUD MISSILES IN DHAHRAN. 
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If devised properly, the control would permit the normal operation of the system, 

reacting as necessary should the system depart from that operation.  The software failure 

control may consist of filters, redundant operators, or any of a number of other objects 

that can decrease the potential for a system malfunction, should an error occur.  

Optimally, the control object will prevent the occurrence of a malfunction and subsequent 

hazardous event.  Understanding the limitations of any design system and the potential 

damage from significant malfunctions, the inclusion of a control object might not prevent 

the occurrence of a hazardous event, instead only mitigate or lessen its effect.  The 

control object itself may be organic or independent of the system, depending on the 

architecture of the system and control that is to be employed. 

7. Semantics Summary 

Software has been simplistically characterized as a set of logic instructions to 

computer operations. 

When those instructions fail to function properly or fail to control safety–critical 

operations, the system will potentially execute a hazardous event.  That event may 

include the control of an electro–mechanical, hydraulic, or pneumatic system; or be the 

control of a critical data system.  The loss of control to either system could conceivably 

constitute a hazardous event, depending on the potential consequence of the failure.  A 

safety–critical event does not require human interaction or input. 

Research and investigation has revealed that the discipline of Software 

Engineering has lacked a common definition for failure and the resulting consequences.  

Other disciplines have spent considerable time and effort to define the practices and 

characteristics of failure, as well as the measures to prevent them.  Software Engineering, 

while still in its infancy, is not exempt from fault or failure.  Many software engineering 

requirement and specification documents relate to Software Safety and Failure in the 

broadest of terms, noting solely that efforts will be done to prevent failure and increase 

safety. 
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NASA, in its Software Safety Standard referred to Faults as “preliminary 

indications that a failure may have occurred,” 79  contrary to the Standard English 

definition of the term Fault – as in imperfection, a weakness, or impairment.80  A fault 

does not occur, it does not develop – it exists, timeless in state and nature, and reveals 

itself only when triggered.  It is not the number of faults in the system that should be the 

concern; rather it is the effect that each fault may have should it be triggered.  Optimally 

that triggering would occur in controlled testing and not in use by the customer.  Software 

Safety has been defined as the “…discipline of Software Safety Engineering techniques 

throughout the software lifecycle that ensures that the software takes positive measures to 

enhance system safety and that errors that could reduce system safety have been 

eliminated or controlled to an acceptable level of risk.”81  If Software Safety were as 

simple as “Make the Software Safer,” then we would not be in the predicament that we 

are today. 

To better understand the discipline of Software Safety and Failure – the following 

definitions are introduced: 

Software Flaw: A specific item that detracts from the operation or effectiveness 

of the software system without resulting in a failure or loss of operability.  A software 

flaw does not result in a failure.  A flaw may reduce the aesthetic value of a product, but 

does not reduce the system’s ability to meet development requirements. 

Software Faults: An imperfection or impairment in the software system that, 

when triggered, will result in a failure of the system to meet design requirements.  A fault 

is stationary and does not travel through the system. 

                                                                                                                                                 
79 NASA – STD – 8719.13A, Software Safety, NASA Technical Standard, National Aeronautics and 

Space Administration; 15 September 1997. 
80 The Merriam-Webster’s Collegiate Dictionary, Tenth Edition, Merriam Webster, Incorporated; 

Springfield, Massachusetts; 1999. 
81 NASA – STD – 8719.13A, Software Safety, NASA Technical Standard, National Aeronautics and 

Space Administration; 15 September 1997. 
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Reactionary Type Faults: A fault characterized by an inability of the system’s 

logic to react to acceptable values of inputs, as defined in the system requirements. 

Handling Type Faults: A fault characterized by an inability of the system’s logic 

to handle erroneous entries or parameters out of the normal bounds of the system. 

Software Failure: The state in which a system has failed to execute or function 

per the defined requirements due to a design fault.82  Failure is usually the result of an 

inability to control the triggering of a system fault.  Faults can be categorized in one or 

more of four types, depending on the circumstances leading to the failure and the 

resulting action.  Failures can be further divided into one of two categories based on the 

source of the failure.  The occurrence of a failure may or may not be detected by the user 

depending on the type of failure and the protections and interlocks of the system. 

Resource Based Failures (RBF): Failures associated with the uncommanded 

lack of external resources and assets.  Resource Based Failures are predominantly 

externally based to the logic of the system and may or may not be software based. 

Action Based Failures (ABF): Failures associated with an internal fault and 

associated triggering actions.  Action Based Failures contain logic or software–based 

faults that can remain dormant until initiated by a single or series of triggering actions or 

events. 

Software Malfunctions: The event within the system that creates a hazardous 

event.  A malfunction is not defined by the failure itself, but rather by the fact that the 

system now fails to operate properly, operates improperly, or fails to operate at all, 

resulting in a hazardous event.  It may be possible for a system to experience a failure 

without resulting in the occurrence of a malfunction.  It may be possible for a system to 

experience  a  malfunction  without  resulting  in  the  occurrence  of  a  hazardous  event,  

 

                                                                                                                                                 
82 Computer Science Dictionary, Software Engineering Terms, CRC Press; ver. 4.2, 13 July 1999. 
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depending on the protections and interlocks of the system.  The term malfunction is a 

very general term, referring to the operability of the entire system and not to a specific 

component. 

Software Hazards: The potential occurrence of an undesirable action or event 

that the software based system may execute due to a malfunction or instance of failure.  

The hazard may be categorized by potential consequence and severity of its occurrence. 

Software Mishap: The occurrence of a software hazard.  Once a system fails, the 

events may trigger a malfunction to execute, resulting in the occurrence of a hazardous 

event – referred to as a Mishap.  Formally, a mishap is defined as the occurrence of an 

unplanned event or series of events and action that results in death, injury, or damage to 

or loss of functionality of equipment, property, or otherwise reducing the worth of the 

system.83 

Control: The system object capable of preventing or mitigating the effects of a 

system malfunction should a failure occur.  Controls may consist of any of a number of 

filters, redundant operators, or other hardware or software objects depending on the 

architecture of the system and control that is to be employed.  A control may be able to 

filter unacceptable values and triggers from contacting a fault, preventing the occurrence 

of a failure. 

In a natural progression, a Software System might have a number of flaws that 

exist and detract from the overall system but do not result in any failures or inability to 

meet system requirements.  In other parts of the system, there might exist faults that 

linger in the background, awaiting a trigger to launch a failure.  Once that trigger is 

received by the fault, the fault generates a failure.  Depending on the level of failure, the 

ability of the system to contain the failure, and failure propagation, the system may 

experience a malfunction.  Investigation and planning could outline a number of potential 

hazards that could occur if the system were to fail.  The resulting malfunction could 
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trigger one of these hazards, ensuing in a mishap.  If possible, that mishap may be averted 

or mitigated through the use of control objects. 

Due to the semantic rich nature of Software Engineering and Software Safety, it is 

necessary to establish a basis of understanding for defining applicable terms within this 

body of work.  The use and definition of the terms flaws, faults, failures, malfunctions, 

hazards, mishaps, and controls are widely contrasting and sometimes contradictory.  

Definitions introduced in this study refine the use of these terms to better represent a 

logical progression and flow from one term to another.  Previous definitions referenced 

throughout this chapter and in state of the art publications84, 85 refer to many of these 

terms as isolated events without a method of evolution through the safety process.  It is 

intended that these refined terms create a better understating of vocabulary to represent 

the fluid nature of safety within the field of Software Engineering. 

D. DEGREES OF FAILURE86 

Once a basis for defining faults and failures is understood, it becomes important 

to define the degrees or levels of failure so that they can be categorized and referenced 

within a metric that this dissertation defines.  I introduce a new series of failure 

definitions as well as complement existing definition series.  The following definitions in 

no way encompass all possible failure definitions, but serve to present a graduated series 

of failure types for use in failure examinations.  Failures are categorized based on the 

following characteristics: their effect on the system, their propagation, and the “cost” that 

they could inflict upon the system.  “Cost,” in the case of failure, can be defined as both 

the tangible and intangible value of resources lost as a consequence of the mishap.  Again, 

                                                                                                                                                 
83 Attributed to NASA – STD – 8719.13A, Software Safety, NASA Technical Standard, National 

Aeronautics and Space Administration; 15 September 1997. 
84  Leveson, Nancy G.; Safeware, System Safety and Computers, University of Washington, Addison-

Wesley Publishing Company; April 1995. 
85  Herrmann, Debra S.; Software Safety and Reliability, Techniques, Approaches, and Standards of Key 

Industry Sectors, IEEE Computer Society, Institute of Electrical and Electronics Engineers, Inc.; Los 
Alamitos, California; 1999. 

86 Nesi, P.; Computer Science Dictionary, Software Engineering Terms, CRC Press; 13 July 1999, 
http://hpcn.dsi.unifi.it/~dictionary. 
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the term “lost” is used to signify the unexpected or unplanned expense due to the failure 

of operation in the system. 

1. Failure Severity 
The loss of system operability from a software failure is not absolute but varying 

from a subtle to a comprehensive failure.  To develop a metric of Software Safety, it is 

essential to understand and define a common set of resulting consequences of failure.  

These definitions can then be applied to a metric and numerically ranked for a common 

evaluation criterion for failure. 

a. Failure Severity Definitions 
Failure Severity: The seriousness of the effect of a failure can be 

measured on an ordinal scale (e.g., classification as major, minor or negligible) or on a 

ratio scale (e.g., cost of recovery, length of down–time).  This value may depend also on 

the frequency of the error.  The following definitions are a combination of successive 

English terms, increasing in severity from the most benign of failures to the most critical.  

Failures may be categorized as follows: 

Invalid Failure: “A failure that is, but isn’t.”  An apparent operation of 

the primary system that appears as a failure or defect to the user but is actually an 

intentional design that is not understood by the user.  These types of defects or failures 

are difficult to trace, as the user may not realize that they are actually intended features or 

design limitations of the primary system.  Invalid Failures may also exist when the 

developer does not design the system to the expectations of the user.  Such invalid 

failures are commonly found when the user does not fully understand the functionalities 

of the system that they are operating or the user attempts to combine seemingly similar 

systems without understanding the bounds and limits of such a connection.  Due to the 

fluid design and rapidly changing environment of “MS Windows” based software, such 

compatibility issues and invalid defects are prevalent in the Microsoft Windows OS: 

The information contained in this document for each device is current as 
of the date first posted; however, since these products are subject to 
modification, revision, or replacement by individual manufacturers at any 
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time without notice, Microsoft cannot guarantee their continued 
compatibility with our operating systems.87 

The term “Invalid Failure” is not synonymous and should not be confused 

with current error prompts that warn the user of an invalid entry, and invalid operation, or 

other invalid execution.  The term implies that the actual fault or failure is invalid to the 

current system and does not locally exist or exist at all. 

Incorrectly stated for the purpose of this dissertation – TA00155 – Error 
Message ‘MSIMN causes an invalid fault in module MSOERT2.DLL at 
017f: 79ef5358.’88 

Key points of an Invalid Failure include the fact that: 

1. The system conforms to the established requirements used by the 

developers, not withstanding the fact that the requirements may not 

meet the functional needs of the user.  It is possible that the 

misrepresentation or expectation of functionality could lead to the 

occurrence of a hazardous event. 

2. The user may attempt to operate the system in an environment for 

which the system was not designed or certified to function.  The 

developer bears the burden of informing users of applicable 

operating environments through proper documentation and training, 

while it is the user’s obligation to ensure compliance with outlined 

requirements.  In an optimal design, the software system would 

validate its environment at the commencement of operation, prior 

to the execution of any critical functions. 

Minor Flaw: A flaw does not cause a failure, does not impair usability, 

and the desired requirements are easily obtained by working around the defect. 

                                                                                                                                                 
87 Microsoft Windows Hardware Compatibility List, Microsoft Corporation; Redmond, Washington; 

2000. 
88 Windows 98 Exception Errors Page, TechAdvice.Com; 2001. 
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We found a minor flaw in the 1.6.5 release.  It was fixed and re–inserted in 
Polaris 1.6.5.tar.gz on the ftp site.  If you download prior to March 7, 2000 
at 11:13 am, you should download again to eliminate this bug.89 

Latent Failure:  A failure that has occurred and is present in a part of a 

system but has not yet contributed to a system failure.  Such a failure can remain hidden 

in the background of the system, but does not surface to result in a malfunction or hazard.  

A Latent Failure may be masked by the speed of the system, in which the processor 

brushes past the failure and compensates for the error by starting a new procedure that 

replaces the incorrect internal information with a corrected value before a system failure 

occurs.  The error may be so insignificant that it does not gain the attention of the 

operating system or the user.  A Latent Failure may surface later as part of a more severe 

failure, but by its nature would not gain the attention of the system independently. 

It is also important to note that, while all the latent failures we observed 
were transitory and were eventually detected and repaired, their durations 
were by no means always negligible.  If the latent failure modes 
introduced by plant modifications tended to be short–lived, they would not 
necessarily be a major concern.90 

Local Failure: A failure that is present in one part of the system but has 

not yet contributed to a complete system failure.  Such a failure is commonly interpreted 

as a Latent Failure. 

Applications and data are secured until the local failure is corrected, or the 
user goes to another WID connection to the same server.  Upon logging in, 
the user’s application and data appear exactly as they were when the 
failure occurred without data loss, even if never saved to disk.91 

Benign Failure: A failure whose severity is slight enough to be 

outweighed by the advantages to be gained by normal use of the system.  A Benign 

                                                                                                                                                 
89 Warning: Minor Bug Fix, Polaris Compiler Questions Forum, Polaris Research Group, University of 

Illinois, Urbana – Champagne Campus; March 2000. 
90 Bier, Vicki Prof.; Illusions of Safety, A White Paper on Safety at US Nuclear Power Plants, 

Department of Engineering, University of Wisconsin, Madison, Wisconsin; 1989. 
91 WID/Server Software, Unique Capabilities Further Reduce Cost and User Frustration, EIS, Bull 

Communications, Versailles, France; 2001. 
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Failure assumes that a failure has occurred but its consequences are so slight as to be 

overshadowed by the benefits gained by using the system.  Such a judgment has to be 

made taking into consideration the severity of potential hazards and likelihood of further 

mishaps. 

These turbo pumps are designed to be completely interchangeable with the 
existing Rocketdyne pumps, have more benign failure modes for greater 
safety, and will have only 4 welds compared to the present 297.92 

Intermittent Failure: The failure of an item that persists for a limited 

duration of time following which the system recovers its ability to perform a required 

function without being subjected to any action of corrective maintenance.  Such a failure 

is often recurrent.  An intermittent failure may or not lead to a malfunction or mishap, but 

is observable by the system and user.  The system may utilize redundant modules or error 

handlers to compensate for the intermittent failure, which explains why the system was 

capable of continuing operation.  Intermittent Failures are easier to isolate and diagnose 

then more severe failures because the system is capable of continuing its operation, 

presenting the user with a controllable platform from which to trouble shoot. 

Most insidious is the partial or intermittent failure of a cable.  The 
symptoms of this kind of failure include partial data transmission, garbled 
data transmission, loss of Internet of network packets.93 

Partial Failure: The failure of one or more modules of the system, or the 

system’s inability to accomplish one or more system requirements while the rest of the 

system remains operable.  Such a failure is also referred to as a Degraded Failure in that 

the system is degraded in its operation, but still remains capable of completing some 

tasks.  A Partial Failure does not reset or correct itself like an Intermittent Failure, but 

rather reaches a constant state once it has occurred.  The Partial Failure may continue to 

propagate through the system and induce additional failures as time persists.  A Partial 

Failure may lead to a Malfunction and eventually a Mishap while other parts of the 

                                                                                                                                                 
92  Alternate Turbopump Development, Space Shuttle Evolution, Chapter 3, National Aeronautics and 

Space Administration. 
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system remain unaffected.  Such a Failure can be misleading in severity and the 

continued operation of other components may convince the user to continue operation.  

This continued operation could give the system the required time to generate a significant 

Mishap which would have been averted had the system been halted at the start of the 

Failure. 

A business phone system may experience partial failure in some subset of 
its features.  In most cases, a dial tone will still be available and the phone 
may seem to function normally.  The problem may occur with the reports 
that detail the duration of each phone call.  For organizations that use this 
information for billing and/or tracking, the erroneous reports may not be 
immediately recognized and automated billing systems may generate 
faulty invoices.94 

Complete Failure: A failure that results in the system’s inability to 

perform any required functions, also referred to in military and aviation circles as “Hard 

Down.”  Aviators and military members refer to a system that is completely broken and 

requires extensive repair as “Hard Down,” while a working system is referred to as 

“Up”:’Hard Down’ Aircraft are usually sent to the hanger deck and are replaced with 

‘up’ aircraft from below.95 

The term also applies to times when the system may be electively brought 

down for maintenance, such as: 

Both NOAA Orions also flew coordinated patterns with NASA aircraft.  
Tomorrow will be a no fly day and Friday a tentative hard down day.96 

 

                                                                                                                                                 
93 Input Devices, Cable Failures, Quinebaug Valley Community-Technical College; 03 February 2000. 
94 Y2K FAQs, Examples of a Partial Breakdown, The Economic Times, Times Syndication Service, New 

Delhi, India; 1999. 
95 Pike, John; Military Analysis Network, CVN-72 Abraham Lincoln Departments and Divisions, Air 

Department, Federation of American Scientists; 23 April 2000. 
96 25 Aug 1998 Entry, CAMEX-3/TEFLUN-B Flight Activities, Hurricane George puts on a light show, 

NASA Science News, Marshall Space Flight Center, National Aeronautics and Space Administration; 
23 September 1998. 
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Because the size of this laser was not known in advance of the Fall IOP, it 
does not have FAA approval or an approved Standard Operations 
Procedures (SOP) at this time.  Therefore, this laser is hard down until 
such approvals…97 

Cataclysmic Failure: A sudden failure that results in a complete inability 

to perform all required functions of an item.  For the purpose of this definition, the use of 

the term “Cataclysmic” refers both to the rate in which the system failed, and to the 

severity degree of the Mishap that resulted from the failure.  The word cataclysmic refers, 

similar to its medical definition, to the fact that the system deadlocked or otherwise 

ceased to function without notice.  Users may not receive any warning that a system was 

to fail, and consequently may not have had time or resources to take corrective action or 

shift to alternate systems.  Due to the processing speed of today’s systems, software is 

particularly prone to sudden complete failure. 

b. Failure Severity Summary 
It is essential to understand that failures come in a myriad of degrees, and 

that a common set of terms must be established to define these failures and their effects 

on the system.  An Invalid Failure is the flawed design of the system, failing to meet the 

user’s expected functionality while conforming to formal design requirements.  Proper 

system operation may be mistaken as a failure, or the operation of the system in 

incompatible or uncertified environment.  A Minor Flaw is inconsequential to the 

operation of the product and does not affect the system’s ability to meet its operating 

requirements.  A Latent Failure existing in the background and does not affect the 

outward functionality of the system.  The logic of the system may compensate for the 

failure or may bypass it as part of normal operation.  A Local Failure is a failure that has 

occurred and is isolated to one part of the system and does not contribute to the system’s 

ability to meet its primary requirements.  A Benign Failure is a failure whose severity is 

slight enough to be outweighed by the advantages to be gained by normal use of the 

system.  An Intermittent Failure may only persist for a limited duration, after which the 

                                                                                                                                                 
97 Sisterson, Doug; Draft Fall 1997 Integrated IOP Operations Plan, Penn State Lidar, Atmospheric 

Radiation Measurement Program (ARM); 18 September 1997. 
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system recovers its ability to perform.  A Partial Failure disables one or more modules 

of the system, or the system’s inability to accomplish one or more system requirements 

while the remainder of the system remains operable.  A Complete Failure results in the 

system’s inability to perform any required functions.  Finally, a Cataclysmic Failure 

refers to the sudden and complete failure of a system, noted both in time and 

Consequence Severity. 

It is possible to examine system failures in a progressive linear format, as 

noted by Figure 4.  My study introduces a refined format for categorizing and defining 

software system failures by using a progressive format to cover all extremes of software 

failure.  These formats and definitions benefit the state of the art of software development 

and software system safety by introducing a more comprehensive terminology for 

defining possible failures and their relationship within failure types.  It is then possible to 

classify and rate failures against an established scale to better acknowledge their severity, 

prioritize resources for their correction, and establish possible goals for development. 

 

Figure 4 Degrees of Failure 
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E. STANDARDIZED FOUNDATION OF SOFTWARE SAFETY 

1. Software Safety Standards98 
A variety of technical standards have been introduced in the past decade that 

delineate proprietary Software Safety philosophies and standards suited to specific 

disciplines and practices, as well as a number of general standards that outline the basic 

principles of Software Safety.  The development of a metric for Software Safety requires 

a review and understanding of existing standards as well as their application.  This 

section provides a brief survey of standards, their applicability to Software Safety, the 

motivation of development, and scope of coverage.  This survey is by no means all–

inclusive, as the complete list of safety standards is too large to be reviewed in this 

dissertation.  This section includes a review of six safety standards, selected for their 

prominence and acceptance as valid safety standards, their mandated use in military and 

governmental systems development, and their applicability as foundations to other 

standards for the development of high–reliance systems.99, 100, 101  Additional standards 

are referenced in APPENDIX D.1 of this dissertation. 

a. AECL CE–1001–STD – Standard for Software Engineering of 
Safety Critical Software 

CE–1001–STD was developed as a joint project by the Ontario 

HydroPower Company and the Atomic Energy of Canada Limited (AECL) in 1990 and 

later revised in 1995. 102   The standard was intended to foster code hazard and 

requirements  analysis  for  the  engineering  of  real–time  protection and safety–critical  

                                                                                                                                                 
98 IEEE SESC Software Safety Planning Group Action Plan, Institute of Electrical and Electronics 

Engineers, Inc.; 15 October 1996. 
99  Software System Safety Handbook, A Technical & Managerial Team Approach, Joint Software System 

Safety Committee, Joint Services System Safety Panel; December 1999. 
100  IR 5589, A Study on Hazard Analysis in High Integrity Software Standards and Guidelines, U.S. 

Department of Commerce Technology Administration, National Institute of Standards and 
Technology, Computer Systems Laboratory; Gaithersburg, Maryland; January 1995. 

101  IEEE SESC Software Safety Planning Group Action Plan, Institute of Electrical and Electronics 
Engineers, Inc.; 15 October 1996. 

102 Standard for Software Engineering Safety Critical Software, Ontario Hydro and the Atomic Energy 
Canada Limited; Canada; 1990, 1995. 
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software in nuclear power generating stations.  CE–1001–STD was designed to provide 

methods and standards for the integration testing of independent modules into a larger 

system. 

CE–1001–STD demonstrates the intent of private corporations to generate 

internal and proprietary standards to meet the specific needs of their organization.  The 

standard covered topics on software development, verification, support, and 

documentation for nuclear power based software systems.  While this standard contains 

many of the principles of developing safety–critical systems, its format is tailored to the 

nuclear industry and the specific needs of the Ontario Power Company. 

b. NASA–STD–8719.13A – NASA Software Safety Technical 
Standard 

STD–8719.13A was developed as a successor to previous Software Safety 

standards to provide a methodology for activities required to design software for NASA’s 

safety–critical systems.103  The standard mandates requirements for projects and project 

managers to ensure compliance with the procedures and measures outlined to build high–

reliance systems. 

The standard is broken down into project requirements for the lifecycle 

phase and phase independent tasks, and for Software Safety analysis.  Additional 

emphasis is placed on quality assurance provisions and system safety definitions.  The 

weak point of the standard is that it only describes safety and the methods for its remedy 

in great generalities, even to the point of stating “Software safety shall be an integral part 

of the overall system safety and software development efforts.”  The standard contains no 

specific instructions, procedures, or numerical measures that must be taken to evaluate 

and design a safe system.  Rather the standard outlines general steps and references to 

encourage safety. 

                                                                                                                                                 
103 Software Safety NASA Technical Standard, NASA-STD-8719.13A, National Aeronautics and Space 

Administration; 15 September 1997. 
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c. MOD 00–56 – The Procurement of Safety Critical Software in 
Defence104 Equipment Part 2: Requirements 

MOD 00–56 is part two of a two-part United Kingdom standard for 

safety–critical software, specifically emphasizing the requirements for hazard analysis 

and risk reduction, also referred to as “Requirements for Analysis of Safety Critical 

Hazards”, approved in 1989.105  The standard was created as a requirement specification 

for the development of defense software systems through the entire lifecycle, from 

development to disposal.  Major portions of the document include General Principles, 

Management and Associated Documentation, Safety Requirements, System Safety 

Analysis, Data Management, Test Program, and Work Program. 

MOD 00–56 specifically outlines mandatory activities, accident severity 

categories, probability ranges, risk class definitions, and safety–integrity levels for the 

development.  This clarity in requirement definition leaves no ambiguity to the 

classification within a Software Safety Assessment.  Many other specifications reviewed 

fail to specify the exact quantifying criteria for determining the safety level of a software 

system as well as the British model does.  The specification outlines Hazard Analysis 

Activities such as hazard identification, risk analysis, hazard analysis, software 

classification, change hazard analysis, safety review, and documentation.  Requirements 

and hazards are processed and classified through the use of Fault Tree Analysis and 

effects and criticality analysis.  The MOD concludes with detailed checklists and 

examples to identify and classify hazards and their safety remedies. 

While there are fundamental flaws in the foundations and assumptions of 

the UK model, the MOD 00–56 serves as a beneficial basis for developing a quantitative 

and qualitative measure for Software Safety.  My study and presentation expands on the 

groundwork established by MOD 00–56 by formalizing the mathematical products that 

can be derived from its checklists and taxonomies.  MOD 00–56 limits its determination 

of specific safety levels within the UK standard, leaving the final determination of such a 

                                                                                                                                                 
104 Note: “Defence” is the British variation of the American spelling of “Defense.” 



70 

level to the developer or individual making the safety analysis.  Following chapters will 

outline methods to formalize the determination of a software system’s safety level by 

improving on methods for statistically computing Software Safety.  These methods are 

based on inspection and historical knowledge, similar to the inspection methods of MOD 

00–56. 

d. MIL–STD–882C/D – System Safety Program Requirements / 
Standard Practice for System Safety 

Military Standard 882D is a broad–based defense standard, established to 

define the requirement for safety engineering and management activities on all systems 

within the U.S. DoD.  This standard provides a uniform set of programmatic 

requirements for the implementation of Software Safety within the context of the military 

system safety program.106  Written in 1993 as MIL–STD–882C and later updated as 

MIL–STD–882D in 2000,107 the standard is not exclusive to the Software Engineering 

and Development discipline but rather to all disciplines of systems engineering 

development, including mechanical, electrical, and aerospace engineering.  It serves as a 

“what–to–do” guide for software developers and engineers when designing System 

Safety Programs.  882C can be tailored and modified to fit the specific needs of the 

required field of development, while the 882D cannot be tailored. 

MIL–STD–882D is an encompassing standard that covers every aspect 

and activity of the system’s development and implementation lifecycle, including 

research, technology development, design, test and evaluation, production, construction, 

checkout/calibration, operation, maintenance and support, modification and disposal.  

The standard is broken into varying levels of requirements including General 

Requirements, Data Requirements, Safety Requirements, and Supplementary 

Requirements.  Additionally, the standard outlines tasks and procedures for assigning risk 

and margins of safety to an engineering project.  Appendix metrics are used to categorize 

                                                                                                                                                 
105 MOD 00-56, The Procurement of Safety Critical Software in Defence Equipment Part 2: 

Requirements, Ministry of Defence; Glasgow, United Kingdom; 1989. 
106 MIL STD 882C, System Safety Program Requirements, Software System Safety Handbook, U.S. 

Department of Defense; 19 January 1993. 
107 MIL STD 882D, Standard Practice for System Safety, U.S. Department of Defense; 20 February 2000. 
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and quantify system hazards by the severity of potential consequences and the probability 

of the occurrence. 

e. IEC 1508 – Functional Safety: Safety–Related Systems (Draft)108 
Developed in 1995, by the International Electrotechnical Commission 

SC65A, IEC 1508 serves as a generic outline for the requirements for the development of 

safety–related systems. 109   Chapter II.E.1 specifically details the requirements for 

software based control systems.  While the draft 1508 document was later replaced by the 

meta–standard IEC 61508, it continues to serve as a basis for international standards for 

the development of high–reliance software and hardware–based systems. 

IEC 1508 relies on the development of a safety plan for the description of 

the safety lifecycle phases and the inter–dependencies between each of them.  It is 

recognized that safety is unique to each module of development, but also that safety is 

intertwined through each of the subsystems of the product and through each stage of 

development.  While IEC 1508 notes that a safety based Software Architecture is the core 

for a safety strategy of development, the standard fails to outline or define a specific 

architecture for such development or to provide any useful guidance in selecting an 

architecture.  1508 is broken up into a seven–part document to include general 

development requirements, requirements for electrical/electronics/programmable 

electronics systems, software requirements, definitions and abbreviations, guidelines for 

the application of requirements in two parts, and a bibliography of techniques and 

measures.  The goal of 1508 is to ensure that systems are engineered and operated to the 

standards appropriate to the associated risk. 

f. Joint Software System Safety Handbook 

Initially written in the fall of 1997 and later revised in December 1999, the 

Software System Safety Handbook (SSSH / JSSSH) serves as a joint instruction for the 

                                                                                                                                                 
108  Note:  IEC 1508 has later been ratified and published as IEC 61508, Functional Safety of 

Electrical/Electronic/Programmable Electronic Safety-Related Systems - Parts 1-7, International 
Electrotechnical Commission, Geneva, Switzerland; 12 May 1997. 
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consolidation of the multitude of governmental and defense Software Safety standards.110  

The SSSH includes “best practice” submissions from the U.S. Army, Navy.  Air Force, 

Coast Guard, Federal Aviation Administration, National Aeronautics and Space 

Administration, defense industry contractors, and academia. 

The handbook reviews current and antiquated software development 

methods and safety standards including DoDD 5000.1, DoD 5000.2R, DoT and NASA 

standards, as well as commercial and international standards of Software Safety 

Assurance.  Additionally, the standard contains an overview of the history of and 

management responsibilities of Software Safety.  The remainder of the text is broken 

down into introductions of Risk Management and System Safety, Software Safety 

Engineering, and an extensive set of reference appendices.  Appendices include the 

management of COTS systems in Safety Development, generic requirements and 

guidelines for Safety Development, worksheets for safety analysis, sample contractual 

documents, and lessons learned from previous safety mishaps and successes.  The 

standard is designed as a “how to” handbook for the general understanding and 

implementation of software system safety into the development process.  The specific 

level of safety of a system is still left up to the measurements of the developer and levels 

acceptable to the client. 

g. Standards Conclusions 
The number and scope of Software Safety Standards is as varied as the 

number of potential safety–related failures that can occur in a system.  CE–1001–STD is 

a specialized standard tailored to the Canadian nuclear power industry while NASA–

STD–8719.13A is an in–house standard for the National Space Agency.  Both standards 

are equally beneficial within there own scope of application and design, but are limited in 

their relevance outside of the specific context for which they were developed.  Both 

standards rely on a framework of administrative protocols and procedures to ensure 

                                                                                                                                                 
109 IEC 1508, Functional Safety of Electrical / Electronic / Programmable Systems: Generic Aspects, 

International Electrotechnical Commission; Geneva, Switzerland; 13 April 1998. 
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compliance.  MOD 00–56 is a governmental Software Safety standard for the Ministry of 

Defence of the United Kingdom, while MIL–STD–882D is a product of the Department 

of Defense of the United States.  Both standards improve on existing methods and 

measures for creating a Software Safety Program while taking different approaches on 

the determination of system’s level of safety.  IEC 1508 is an international safety 

standard that includes an extensive review of safety principles and contains a chapter 

specifically dedicated to Software Safety.  Using proprietary standards, national standards, 

and finally international standard, the DoD has consolidated its efforts to create the Joint 

Software Safety Standard Handbook.  APPENDIX D.1 – Table 19 lists a compiled set of 

standards and their techniques for identifying and handling Software Safety. 

The development of any Software Safety Standard or Safety Metric 

requires the review of available standards, to serve as a basis or foundation.  These 

standards are themselves based on previous standards, tailored to meet the specific needs 

of the user agency or client.  While these standards provide a basis for developing 

Software Safety, they do not completely define the measurement of software’s level of 

safety.  Using the principles of these and other standards, as well as principles of statistics 

and probability, this study outlines additional measures for determining the safety of a 

software system. 

2. Traditional Methods to Determine Software Safety 
As with Software Safety Standards, there are methods and algorithms that can be 

used to determine the safety of a system or the probability of failure.  Each method is 

unique in its approach, its product, and in its interpretation of Software Safety as well as 

many of the methods being proprietarily to specific standards.  The key components of a 

Software Safety Assessment are: 

• The identification of hazards. 

• The identification of the ability of the system to handle the specific hazard. 

                                                                                                                                                 
110 Software System Safety Handbook, A Technical & Managerial Team Approach, Joint Software System 

Safety Committee, Joint Services System Safety Panel; December 1999. 
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• The measurement of probability of the system to prevent the hazard. 

• The measurement of the consequence of the hazard. 

Based on the defined criteria for a Software Safety Assessment, many existing 

methods and standards are eliminated.  The purpose of a Software Safety Assessment is 

to evaluate the quantity and level of hazards that exist within the system and to determine 

the level of mitigation or handling of each hazard's risk.  A Software Safety Assessment 

evaluates all software components capable of creating a hazard under normal operating 

conditions as well as under extreme and abnormal operating conditions.  A Software 

Safety Assessment includes the testing of all components, modules, and interfaces of the 

system including COTS / GOTS components incorporated into the system, regardless of 

the previous success of the testing of the components.  A system implies the 

incorporation of multiple units to make a complete structure.  Each component must be 

evaluated independently, as well the incorporated results of those components. 

A product of a Software Safety Assessment includes the identification of 

corrective actions necessary to eliminate or mitigate the risk of hazards.  Optimally 

testing is conducted throughout the development process to determine the fragility of the 

system and its increased robustness with each cycle of development.  There is a distinct 

difference between testing a Software System for functionality and testing a Software 

System for Hazards and Safety.  A system may function properly and within the proper 

bounds it was developed for, but may still execute an action that results in a mishap. 

With experience and proper reasoning, it would be possible to derive the 

probability of failure if: 

• The distribution of inputs are known, 

• The hazardous situations are known, 

• The program logic and code are known, and / or 

• There are sufficient resources for making the assessment. 
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It would be difficult to emulate every possible state environment that the software system 

could experience in relation to every potential input.  As a start, bounding the inputs 

would limit the field that must be searched.  As a second, understanding the logic and 

code of the system would open some potential for understanding vulnerabilities.  

Unfortunately, these are only two of the many factors that contribute to an accurate 

assessment.  While it is very difficult to accomplish without adding excessive overhead to 

the system, the control and bounding of potential system environments would be another 

level of system design capable of increasing system safety.   

The equations and assessment logic would be similar for both large and small 

system, while the resources required to make the assessment may differ dramatically.  

Depending on the nature of the system, measurements of runtime frequencies may 

require an impracticable amount of time if failure frequencies are very low.  A judgment 

and limit must be made of the assessment method to ensure that resources are not grossly 

expended.  Note:  The resources for assessment must be balanced against the benefit 

gained from the assessment and consequential improvements. 

a. Coverage Testing 
Software Coverage Testing (CT) is the testing of a series of cases and 

fields with a pass/fail criterion.111  Coverage is measured by the level and extent of the 

testing of each case from a scale of 0% to 100%.  Examples of Coverage Test cases 

include the testing of each line of code, the testing of data coverage, and error state 

handling.  APPENDIX D.2 lists over 100 different test cases that apply to software–based 

systems.  Much of CT is considered traditional “White Box Testing” in that the testing is 

done from a viewpoint from inside the component itself vice from the end user’s 

viewpoint of view.  CT can become exponentially time consuming as the goal for a 

coverage measure increases towards 100%.  Many aspects of CT can be automated and 

executed from compilers and third party software testing tools.  CT is not a measure of 

safety, as it does not regard the hazards of failure but rather the ability for a test to return 

                                                                                                                                                 
111 Kaner, Cam; Software Negligence & Testing Coverage, Software QA Quarterly, vol. 2, num. 2, pg. 

18; 1995. 
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a pass or fail response for a given level of coverage.  CT does serve as a measure of 

functionality and process completeness, inferring an ability of the system to handle and 

prevent specifically identified failures within the bounds of the testing. 

Coverage Testing is widely used in software reliance testing for its ability 

to certify a system’s completeness through the use of system inspection based on defined 

development and operation points.  A score can be given to the certification by summing 

the number of tests that pass against those that may fail.  Such summation scoring of 

Coverage Testing fails to take into consideration the weight of particular test points or 

consequence results.  These points are addressed with potential correction in this 

dissertation. 

b. Requirements Based Testing (RBT) 
Requirements Based Testing is a function of systematically testing the 

operation of a Software System for compliance within the bounds established by a given 

set of project development requirements.  Requirements can be measured or gauged by 

their complexity or by the number of functional points generated.  Optimally, 

requirements are established early in the development of the system though they may be 

revised and refined repeatedly through the development cycle.  As requirements are 

established, they can be verified, measured for complexity, weighted for their effect on 

the system, and assigned a test case to validate the function of the system within the 

bounds set by the requirement.  The result of RBT is a pass/fail grade for each 

Requirement or Function Point Test. 

The proper function of the system dictates that requirements are well 

written and validated for completeness as well as they are reasonable and practical to the 

development of the system.  Requirements must be written in such a manner that they 

lead to the development of a test case and can be validated.  If requirements are unclear, 

incomplete, too general, or not testable they jeopardize the functionality of the system 

and do not support a test case.  NASA stated in its paper on requirements testing metrics 

that, “There are no published or industry guidelines or standards for these testing 

metrics—intuitive interpretations, based on experience and supported by project feedback, 
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are used….” 112  Many industry development standards specify unique requirements 

documentation formats that are proprietary to the standard itself and may not lead directly 

to test cases, based on their formats.  Automated Requirements Management Tools must 

be refined or developed for each System Requirement Specification (SRS) format or the 

requirements must be converted to the tool. 

Requirements and Function Points are measures that can be obtained early 

in the development cycle.  They provide a textual and mathematical value that can be 

compared against previous development efforts.  Function and Feature Points, coupled 

with the COCOMO113  and Putnam114  methods of software evaluation can provide a 

subjective estimated measure of the complexity, effort, and cost of the system as well the 

probability of developmental failure (failure to complete the development), based on a 

comparison method against known projects.115 

RBT is not a complete method of Software Safety Testing, as its purpose 

is to test for the ability to develop the system based on criteria and bounds established in 

the requirements.  RBT must be complimented by additional methods that validate the 

requirement content for completeness, in conjunction with a comprehensive safety 

program to provide oversight throughout the development process. 

Requirements are function based, while hazards are the product of 

the function. 

Measurements such as the vagueness, imperativeness, continuance, or 

weak phrases within a requirement’s specification do not imply a hazard but impinge 

                                                                                                                                                 
112 Rosenberg, Linda H., PhD; Hammer, Theodore F.; Huffman, Lenore L.; Requirements, Testing, & 

Metrics, Software Assurance Technology Center, National Aeronautics and Space Administration; 
October 1998. 

113 Boehm, Barry; Clark, Bradford; Horowitz, Ellis; Madachy, Ray; Shelby, Richard; Westland, Chris; 
Cost Models for Future Software Lifecycle Processes: COCOMO 2.0, Annals of Software 
Engineering; 1995. 

114 Putnam, Lawrence H; Myers, Ware; Measures for Excellence. Reliable Software On Time Within 
Budget, Yourdon Press Computing Series; January 1992. 

115 Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 
Postgraduate School; Monterey, California; September 2000. 
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upon the functionality of the system.  Lines of text within the requirement are not a 

measure of safety but of the complexity of the system and the requirements to build.  A 

system may function properly but may still induce a hazard simply by the fact that the 

system executes a hazardous operation that may be specified by an unsafe set of 

requirements. 

RBT does not completely satisfy the needs of critical system development, 

as its emphasizes tests of what is known of the system and not of what is unknown.  I 

have included a review of the software product from the point of view of the hazard that 

the system is designed to prevent, and then work backwards to ensure that requirements 

satisfy the prevention of their occurrence.  Requirements may not consider the 

consequence of hazard prevention, unless such prevention was the focus of the 

requirement.  Requirements Based Testing only ensures that the requirements were 

satisfied, regardless of the hazard that may need to be prevented.  An outlined method is 

presented for reviewing the development of the system, through all stages of 

development of development to ensure that hazards are prevented, to an acceptable level. 

c. Software Requirements Hazard Analysis (SRHA) 
First introduced in MIL–STD–882B as a 301 Series Task,116 a Software 

Requirements Hazard Analysis involves the review of system and software requirements 

and design in order to identify potentially unsafe modes of operation.  This review 

ensures that system safety requirements have been properly defined against potential 

hazards, and that safety requirements can be traced from the system requirements to the 

software requirements; software design; testing specifications; and the operator, user, and 

diagnostic manuals.117  Preceding this review must be a hazard analysis that identifies 

missing, ambiguous, incomplete, or incoherent requirements that are safety related and 

incorporate them into the system and software specification.  The SRCA or SRHA 

                                                                                                                                                 
116 MIL-STD-882B, System Safety Program Requirements, Department of Defense; Washington, D.C.; 30 

March 1984. 
117 NISTIR 5589, A Study on Hazard Analysis in High Integrity Software Standards and Guidelines, U.S. 

Department of Commerce Technology Administration, National Institute of Standards and 
Technology, Computer Systems Laboratory; Gaithersburg, Maryland; January 1995. 
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becomes the means of tracking them to resolution.  The analysis starts in the system 

requirements phase of the system lifecycle to include a review of system and software 

requirements and documentation.  Safety recommendations and design and test 

requirements are incorporated into the development specifications, documentation, test 

plan, configuration management plan, and project management plan. 

Where the Preliminary Hazard Analysis is the first stage, the SRHA is the 

second stage of system hazard analysis.  Upon completion of the SRS a thorough review 

of the requirements, specifications, and any previously known hazards are completed.  

The product of this review becomes a part of the system requirement’s documentation 

and is used in conjunction with further test plan development. 

The SRHA is subjective in nature and requires an intuitive knowledge 

of the system and subject matter being developed as well as the foresight to see 

potential system hazards from the review of a textual product.  There is no defined 

format for the SRHA review report. 

Primary values of the report would include known and potential hazards, 

their triggers, related requirement(s), methods to mitigate the hazard, and test criteria. 

This dissertation uses portions of the SRHA philosophy by reviewing the 

hazards that could result as a consequence of specific requirements by assigning a 

numeric value to the assessment of specific elements.  While the SRHA may be 

subjective in its review, I introduce methods for formalizing the review to ensure 

standardizing practices and methodologies. 

d. Software Design Hazard Analysis (SDHA) 
Design Hazard Analysis is the third in the evolutionary step of Hazard 

Analysis, following Requirement Hazard Analysis.  As with SRHA, SDHA was 

formalized in MIL–STD–882B as a 302 Series Task. 118   Using the SRHA and its 

                                                                                                                                                 
118 MIL-STD-882B, System Safety Program Requirements, Department of Defense; Washington, D.C.; 30 

March 1984. 
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resulting product as input, SDHA involves the identification of safety–critical software 

components; assessing their degree of risk and relationship to other components, 

establishing a design methodology, and developing a test plan for validating the 

component’s safety.  The SDHA identifies specific software components that relate to the 

hazard.  It also determines software failure modes that could lead to a hazard, identifies 

the components associated with that failure mode, and finally designates respective 

elements as safety critical.  Based on the assignment of hazards to components, the 

system can then be reviewed for independence, relationship, or reliance conditions that 

could propagate the fault or hazard.  The analysis starts after the software requirements 

review and should be near completion before the start of software coding. 

Most software, due to its lack of self–awareness, requires some form of 

external interaction to launch its procedures or to receive its results.  Hundreds of 

interface devices have been developed and are currently being developed that permit 

human interaction with the software system.119  Additional devices provide the ability for 

animal, nature/climatic, or secondary system interaction with a software system.  The 

Design Analysis requires an extensive review of potential interface conflicts and hazards 

that can be induced by the interaction of external users or systems including those 

associated with failure modes of the interfacing devices. 

Based on the assessment of the component design, changes are then made 

to the software design document to eliminate and/or mitigate the risk of a hazard or 

simply to raise the awareness of the programmers who will be designing the component.  

The SDHA may suggest a unique method of development for different components as the 

hazard probability and complexity of one component may differ from the next.  The 

assessment may result in a review of the system requirements or simply result in 

recommendations for design and development. 

                                                                                                                                                 
119 Myers, Brad A.; A Brief History of Human Computer Interaction Technology, ACM interactions. vol. 

5, num. 2, pg. 44-54; March 1998. 
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The SDHA is also subjective in nature as the software product is still 

in theoretical form.  Subject matter expertise on the product as well as on methods 

of development is required to ensure a thorough analysis. 

Where the Software Requirements Hazard Analysis focused on the safety–

related hazards of the requirements, the Software Design Hazards Analysis focuses on the 

design and development of components to satisfy the requirements and avoid hazards.  

The concepts of the Software Design Hazards Analysis are mirrored in the NASA Safety 

Manual NPG 8715.3.120 

There is no defined format for the SDHA review report, while it should 

follow a similar format chosen for the SRHA.  In complement to MIL–STD–882, the 

DoD created DID DI–SAFT 80101B – System Safety Hazard Report Analysis121 (SHRA) 

to describe the data items of a hazard analysis report.  The report should include a 

summary description of the system and its components, their capabilities, limitations, and 

interdependence as they relate to safety.  The analysis should include a listing of: 

• Identified hazards, 

• Hazard related components, modules, or units, 

• Hazard failure mode(s) resulting in the hazard, 

• System configuration, event, phase, and description of operation 

resulting in the hazard, 

• Hazard description, 

• Hazard identification properties, 

• Effects of the hazard, 

• Recommended actions, 

• Effects of the recommendations, and 

                                                                                                                                                 
120 NPG 8715.3, NASA Safety Manual, NASA Procedures and Guidelines, National Aeronautical and 

Space Administration; 24 January 2000. 
121 DI-SAFT-80101B, Data Item Description, System Safety Hazard Analysis Report, Department of 

Defense; Washington, D.C.; 31 July 95. 
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• Notes, cautions, or warnings applicable to the operation of the 

component and its related hazards. 

This study relies heavily on the practices outlined in SDHA.  These 

methods and study improve on the practice by establishing a progression from SRHA to 

SDHA, establishing a format for the review, and the use of a numerical / textual format 

for assessing the findings of the SDHA. 

e. Code–Level Software Hazard Analysis (CSHA) 
Code–level Software Hazard Analysis is a fluid analysis of the source and 

or object code, the code writing process, and results, as it corresponds to Software Safety.  

It is one of the most common forms of hazard analysis to test high–risk software or when 

there exists test anomalies that are not the result of errors in test setup or procedures.  The 

CSHA is an analysis of the software code and system interfaces for events, faults, trends, 

and conditions that could cause or contribute to a system hazard.122  The term fluid refers 

to the fact that the software analysis is ongoing through the development of the software 

code and into the testing phase of development.  Most often, the product of code level 

hazard evaluations result in modifications to the code to ensure the correct 

implementation of requirements or to improve the ability of the code to handle specific 

failure conditions.  Additional changes may be made to the requirements specifications 

and software test plan to ensure that the software meets the intended developer and 

customer.   

The Code–Level Safety Hazard Analysis differs from Requirements and 

Design based analysis in that the Code–Level deals with a tangible product that can be 

evaluated and manipulated real–time with the evaluation.  Previous evaluations could 

only be done through theoretical methodologies or using simulation tools that replicated 

the function of the component or requirement.  The CSHA examines the code for form, 

structure, flow, and completeness not previously detected by system compilers.  This 

                                                                                                                                                 
122 MIL-STD-882B, System Safety Program Requirements, Department of Defense; Washington, D.C.; 30 

March 1984. 
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examination includes inspection for input–output timing, multiple and out–of–sequence 

events, failure mode handling, and compliance with safety requirements.  The evaluation 

may be subjective as well as objective due to the tangible nature of the software code. 

It should be clearly understood that “Lines of Code” is not a 

measurement of Software Safety. 

This dissertation makes only limited use of CSHA due to its narrow 

application to Software Safety.  CSHA is reviewed in this dissertation only due to its 

popularity as a software development assessment tool, and to its applicability towards 

Software Safety. 

f. Software Change Hazard Analysis (SCHA) 
At the completion of a development cycle, software may be re–evaluated 

for functionality and applicability to requirements and safety concerns.  With each 

change of the software system, new safety concerns are introduced that require 

identification and evaluation.  The Software Change Hazard Analysis is an evaluation of 

changes, additions, and deletions to the software system and of their impact on safety.123  

SCHA is performed on any changes made to any part of the system, including 

documentation, to ensure that the change does not induce a new hazard or mitigate the 

defense against an existing hazard.  This hazard analysis is performed at the end of the 

software development cycle before the commencement of new development. 

British Defence Development Standards state that, “If the system, 

application, or the operating conditions are changed, it cannot be directly inferred that the 

system will be tolerably safe for use in the new situation.  Any changes to the system, its 

application or its operational environment must be reviewed for possible impact on safety 

and appropriate steps must be taken to ensure tolerable safety is maintained.”124  It is 

                                                                                                                                                 
123 MIL-STD-882B, System Safety Program Requirements, Department of Defense; Washington, D.C.; 30 

March 1984. 
124 MOD 00-56, Safety Management Requirements for Defence Systems, Part 1/Issue 2: Requirements, 

Ministry of Defence; Glasgow, United Kingdom; 1989. 
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essential that each change be evaluated for its impact on the safety of the system and not 

be taken for granted as a minor modification or improvement. 

The SCHA concept was reviewed in the work accomplished by Nogueira 

de Leon. 125   This dissertation reviews the application of change analysis in the 

development process by ensuring that a complete review of the software system is 

accomplished in each iteration cycle. 

g. Petri Nets 
Petri Nets were developed in 1961 by Carl Petri to graphically and 

mathematically model a distributed system.126   While Petri Nets were not originally 

developed to model software systems, they are applicable to all systems requiring 

modeling of process synchronization, asynchronous events, concurrent operations, and 

conflicts or resource sharing.  Petri Nets have been successfully used for concurrent and 

parallel systems modeling and analysis, communication protocols, performance 

evaluation and fault–tolerant systems.  The system is pictorially modeled using 

conditions and events represented by state transition diagrams as:127 

• States – Possible conditions represented by circles 

• Transitions – Events represented by bars or boxes 

• Inputs – Pre–conditions represented by arrows originating from 

places and terminating at transitions 

• Outputs – Post–conditions represented by arrows originating from 

transitions and terminating at places 

• Tokens – Indication of true conditions represented by dots 

 
                                                                                                                                                 
125  Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 

Postgraduate School; Monterey, California; September 2000. 
126 NISTIR 5589, A Study on Hazard Analysis in High Integrity Software Standards and Guidelines, U.S. 

Department of Commerce Technology Administration, National Institute of Standards and 
Technology, Computer Systems Laboratory; Gaithersburg, Maryland; January 1995. 

127 AFISC SSH 1-1, Software System Safety, Headquarters Air Force Inspection and Safety Center; 05 
September 1985. 
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Figure 5 Petri Net Example 

As depicted in Figure 5, S1 is an unpopulated state, while S2 and S3 are 

states with tokens.  The tokens permit T2 to fire while T1 remains stagnant.  The output of 

S2 and S3 transitions through T2, passing their token on as an input to S5. 

Developed to track the flow and states of a system, Petri Nets can be 

"executed" to depict how the system will function and flow under certain conditions.  

Assigning logic conditions to transition points and places permits higher–level modeling 

and evaluation of the system.  The Petri Nets can be used to determine all the states that a 

system can reach, given an initial set of conditions.  Due to the graphical nature of Petri 

Nets and their ability to portray only a single state in each depiction, Petri Nets can 

become too large to practically examine all possible states of a system.  A Petri analysis 

can be done for only those portions of the system that present the potential for a 

hazardous event.128 

Using mathematical logic statements, Petri Nets can be used to describe 

structural transition relationships between potential cases via potential steps. 129   By 

adding an initial state, the description can be modified to describe actual cases and steps.  

Mathematically, Figure 5 would be depicted as: 

                                                                                                                                                 
128 Peterson, J. L.; Petri Net Theory and Modeling of Systems, Prentice Hall; 1981. 

S1 S2 S3

T1 T2

S5S4 
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N = (S, T, F) 
S = {S1,…,S5} 
T = {T1, T2} 
F = {S1, T1}, {S2, T1}, {S2, T2}, {S3, T2}, {T1, S4}, {T2, S5} 
 
Where N is a Petri Net 
Where S are States 
Where T are Transitions 
Where F are Flows 

 
This mathematical notation can be universally understood and applied to 

any number of proofs and metrics.  The notation can also be applied to automated testing 

software that can dramatically increase the rate of software inspection for potential 

hazards.  The Petri Model can be created early in the development cycle and refined as 

the program increases in scope and potential hazards are recognized.130 

This dissertation expands on the benefits of Petri Nets in two ways: 

1. By expanding on the benefit of a flow depiction diagram to show 

the process flow and system interaction of the software system, 

and 

2. The use of a mathematical terminology and method for depicting 

the process flow. 

Each of these techniques is based in the Petri Net methodology, but must 

be improved and developed to ensure the relationship with high–assurance systems. 

                                                                                                                                                 
129 Balbo, Gianfranco; Desel, Jorg; Jensen, Kurt; Reisig, Wolfgang; Rozenberg, Grzegorz; Silva, Manuel; 
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130 Leveson, Nancy G.; Janice L. Stolzy; Safety Analysis Using Petri Nets, IEEE Transactions on 
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h. Software Fault Tree Analysis (SFTA)  
131, 132Fault Tree Analysis has proven extremely successful in identifying 

faults in a variety of engineering design disciplines,133 including the fields of aeronautical, 

electrical, mechanical, and Software Engineering.  A Fault Tree Analysis is designed to 

pictorially model contribution of faults or failures to the top-level event, concentrating on 

aspects of the system that impact the top event.  The Fault Tree depiction provides a flow 

model through the system to facilitate the identification of points or methods possible to 

eliminate or mitigate the hazardous event.  A SFTA is created from the base or root of the 

tree by listing all known hazards identified in previous analyses.  Once an initial hazard 

analysis has been completed and hazards identified and plotted, SFTA is worked 

backwards to discover the possible causes of the hazard.  The SFTA is expanded until 

each branch concludes at its lowest level basic events, which cannot be further analyzed. 

The purpose of a SFTA is to demonstrate that the software will not permit 

a system to reach an unsafe state.  It is not necessary to apply the SFTA to the entire 

system but only to portions that present a risk to system operation or are considered 

safety–critical.  If properly designed, a Fault Tree can reveal when a correct state 

becomes unsafe and can lead to a failure.  The failure can then be traced as it propagates 

through the system.  The use and applicability of Fault Trees is readily understood within 

the engineering field and easily related to Software Engineering.  A SFTA may include 

symbols such as: 

                                                                                                                                                 
131 Leveson, Nancy G; and Peter R. Harvey; Analyzing Software Safety, IEEE Transactions on Software 

Engineering , vol. SE-9, num. 5, Institute of Electrical and Electronics Engineers, Inc.; September 
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133 PD-AP-1312, The Team Approach To Fault Tree Analysis, Preferred Reliability Practices, Marshall 
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Figure 6 Fault Tree Symbology134 

A Fault Tree may be a depiction of the entire system or simply of the sub–

system pertaining to the particular hazard being analyzed.  A Software Fault Tree (Figure 

8) is actually a sub–tree of the greater System Fault Tree (Figure 7) in which a hazard 

exists that a car can cross a railroad track at the same time when there is a train.  The 

Software Fault Tree examines one of the possible triggers of the hazard, namely the 

failure of the If–Then–Else Statement.  Such a Fault Tree could be further decomposed to 

illustrate all of the other possible branches of potential hazards and failure propagation. 

                                                                                                                                                 
134  NISTIR 5589, A Study on Hazard Analysis in High Integrity Software Standards and Guidelines, U.S. 

Department of Commerce Technology Administration, National Institute of Standards and 
Technology, Computer Systems Laboratory; Gaithersburg, Maryland; January 1995. 

Event to be analyzed.  Requires further analysis. 

 
Component level faults or independent basic events.  No further analysis. 
 
Event normally expected to occur. 
 
Event not further analyzed due to lack of information or non-criticality. 
 
Condition; defines the state of the system. 
 
AND Gate, indicates when all inputs must occur to produce the output. 
 
System Processes, Functions, or Objects 
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Figure 7 System Fault Tree Example 

 

Figure 8 Software Fault Tree Example 

Event Tree Analysis, similar to Fault Tree Analysis, is designed using a 

bottom up approach to model the system.135, 136  Each root item is an initiating event of 

the system.137  Two or more lines are drawn from each root item to the next event to 

make up the event tree.  These lines depict the positive and negative consequences of the 

event, as well as variable consequences that do not fall within the limits of Boolean 

expression.  The Event Tree is expanded for each subsequent consequence until all 

                                                                                                                                                 
135 IEC/TC65A WG9, IEC 65A (Secretariat) 94, 89/33006 DC -(DRAFT) Software for Computers in the 

Application of Industrial Safety-Related Systems, British Standards Institution; November 1989. 
136 IEC/TC65A WG10, 89/33005 DC - (DRAFT) Functional Safety of Programmable Electronic Systems, 

British Standards Institution; November 1989. 
137 Raheja, Dev G.; Assurance Technologies - Principles and Practices, McGraw-Hill, Inc.; 1991. 
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consequences are considered.  Each branch of the Event Trees can then be used to 

calculate the probabilities of each consequence to generate a mathematical probability for 

success or failure.138 

Based on the analysis of the Fault or Event Tree, decisions can be made to 

balance the efforts of development against the desired measure of safety.  Changes can 

then be made to the development process to take action to mitigate or eliminate the 

hazards as desired.  Tree Analysis is easy to construct and is aided by a significant 

number of COTS systems available to developers.  Depending on the system, such an 

analysis may become extremely large and difficult to maintain without some form of 

automation.139, 140 

Fault and Event Tree Analysis is designed around depicting the decision 

process of the system.  Analyzing the decisions and directions that a system process flow 

can make can assist in eventually isolating many system failures.  Such isolation is based 

on the limits and bounds that the system is to operate within.  When the developer is able 

to depict this decision process pictorially, in a standardized fashion, the developer can 

more effortlessly identify points that require additional protections and controls. 

i. Conclusions of the Estimation of Software Safety 
Software Safety can be described in two fashions: 

1. As a Boolean expression of the software being safe or unsafe, or 

2. As a numeric value representative of the probability of safety or 

the probability of an unsafe action. 

To quantify how safe software is or to determine if software is safe 

requires the identification and analysis of the potential hazards of the system.  This 

                                                                                                                                                 
138 NUREG-0942, Fault Tree Handbook, U.S. Nuclear Regulatory Commission; 1981. 
139 Limnious, N; Jeannette, J.P.; Event Trees and their Treatment on PC Computers, Reliability 

Engineering, vol. 18, num. 3; 1987. 
140 Fussel, J.; Fault Tree Analysis - Concepts and Techniques, Generic Techniques in Reliability 

Assessment, Noordhoff Publishing Co., Leyden, Holland; 1976. 
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portion of the dissertation outlines many of the popular methods and protocols for 

evaluating the safety of a software system, and defining the differences between testing 

for functionality and testing for safety.  Methods such as Coverage Testing and 

Requirements Based Testing only examine a system to ensure that it meets a broad list of 

predetermined criteria.  To test for safety requires the specific goal of the test or analysis 

to identify potential hazards and the triggers that may produce those faults. 

Measurements such as COCOMO and Putnam do not determine the safety 

of a software system but rather determine the level of effort or complexity of a system.141, 

142  Complexity is not a natural result of the COCOMO and Putnam measurements, but an 

increased effort can infer an increased complexity. 143 , 144   Just because a system is 

complex in its development does not necessarily mean that it will produce a hazard.  A 

system may function in accordance with its stated requirements, but may still execute an 

action that results in a mishap. 

Hazard Analysis is the only previously proposed method to identify 

hazards through each phase of the development process.  Examples include Requirements 

Hazard, Software Design Hazard, Code–Level Hazard, and Change Hazard Analysis.  

These hazard analysis methods may incorporate principles of Coverage and 

Requirements Testing with the exception that their intent is to specifically identify 

hazards and not functional irregularities.  Their validity and applicability in software 

development is still not completely accepted or integrated into all aspects of critical 

systems development.  Any decision as to which analysis technique would best apply 

depends on the techniques and abilities of the developers and the system under 

investigation. 

                                                                                                                                                 
141  Boehm, Barry; Clark, Bradford; Horowitz, Ellis; Madachy, Ray; Shelby, Richard; Westland, Chris; 

Cost Models for Future Software Lifecycle Processes: COCOMO 2.0, Annals of Software 
Engineering; 1995. 

142  Putnam, Lawrence H; Myers, Ware; Measures for Excellence. Reliable Software On Time Within 
Budget, Yourdon Press Computing Series; January 1992. 

143  See Chapter II.E.2.b – Requirements Based Testing (RBT) 
144  Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 

Postgraduate School; Monterey, California; September 2000. 
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Once hazards are identified and analyzed, they can be pictorially displayed 

using Petri Nets or Fault Tree Analysis methods.  These methods give the developer the 

ability to graphically depict a system, mapping its flow and logic patterns based on 

variable system cases states, as well as portraying the system in mathematical form.  

These methods provide the ability to assign weight to the branches of the system, thereby 

providing a systematic way to estimate the probability of a specific occurrence.  This 

concept will be applied later in the dissertation to develop a metric for assessing and 

assigning the level of safety of a system. 

 There are still no valid metrics for measuring the probability of failure in 

software.  Software processes do not fail in a statistically predictable manner (e.g., mean–

time–between–failures), they fail as a result of encountering an environment, either input 

or internal state (or combination) that they are not designed to accommodate.  Every time 

the process encounters that environment, it will fail; therefore, the statistic is a measure of 

the probability of encountering that environment.  If we can predict the environments that 

will cause the software to fail, we can also design the software to “handle” that 

environment.  Attempts at measuring software failure rates are generally aimed at the 

entire program.  Additional research needs to be done to quantify the probability of 

failure of a single function, module, or thread through software.  The only software 

reliability metric that has any relationship to safety is reliability trend analysis.  As we see 

the reliability of software improving, it gives us additional confidence (but by no means 

certainty) that the number of errors in the software have been substantially reduced.  

However, we still do not know if the remaining errors are in safety–critical functions 

within the software. 

A key part of the Software Systems Safety process is the development of 
safety–design requirements for the safety–related functions.  The purpose of these 
requirements is to ensure that the safety–related software will not fail as a result 
of encountering certain conditions, generally failure modes or human errors.  We 
analyze the design of these requirements to ensure that they implement the intent 
of the requirements vice the letter of the requirements (i.e., we want to ensure that 
they aren’t misinterpreted).  We will also develop tests throughout the process to 
verify that these requirements mitigate the risks we have identified.  The purpose 
in this is to reduce the probability of a hazardous failure in the safety related 
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functions to as close to zero as possible.  We may therefore specifically design the 
software to fail in a non–hazardous manner (there goes our reliability).  While we 
can never assume that the probability of a hazardous failure is zero, we can, after 
careful application of the software systems safety process, justify an assumption 
that it is acceptably low.  That is a qualitative estimate but it’s the best we can do 
due to the nature of software.145 

 

F. CONCLUSIONS 

As systems become further reliant on software to control their operation and 

prevent hazardous events, the probability of software related mishaps increase.  The most 

complex of systems may have no probability of hazards, while the simplest of systems 

may be responsible for preventing the greatest of catastrophes.  Take for instance the 

software that controls and regulates the control rods of a nuclear power plant.  Using 

nothing more then a series of If–Then Statements, the system manipulates the control 

rods up and down to establish a stable medium within the reactor core.  The concept is 

simple but the repercussions are Earth changing.  It is essential that a metric and protocol 

be developed that can identify hazards, determine their probability of occurrence, and 

establish the level of safety of a software system. 

Current standards and metrics try to standardize the development process into a 

canned evolution of documentation and reports followed by structured coding and testing.  

Software is fluid in nature and but still follows the structured rules as other disciplines of 

engineering.  If a bridge is too weak, you can add more structural support but that support 

will add to the weight of the bridge, thereby adding a new burden to the foundation.  

While today’ software is modular in nature, adding one unit to the system will directly 

affect the functionality of other dependent components.  While a bridge is bounded by the 

limits of structural engineering, software is only bounded by logic.  A standard is 

required that is fluid in nature and can capture the unique aspects of software and aid in 

increasing the safety of the system. 

                                                                                                                                                 
145  Brown, Michael; Personal Communications related to LCDR Chris Williamson’s Research, Naval 

Postgraduate School, Monterey, California, 16 March 2004. 
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Software Safety is not the burden of the software.  It is the burden of the 

developer to ensure that the software is developed in a manner capable of preventing 

unsafe actions. 

Software Safety is not based on the organization of the development group.  It is 

based on the development group’s ability to identify and prevent hazards. 

Software Safety is not based on a new development method, but rather the 

refinement and application of existing methods of development. 

A structured flow of development is essential to ensure that hazard analyses and 

Software Safety is part of the development process.  Safety Analysis and Identification is 

critical to the success of Software Safety.  A hazard must be identified before the 

designer can act to mitigate it or a safety analyst can assess the probability of the hazard 

causing a mishap. 

This dissertation proposes a method for identifying system hazards, depicting the 

process flow of the system as it relates to Software Safety, and the establishment of a 

method for mathematically depicting the results of the safety analysis.  The current state 

of the art does not define a numeric method for determining the safety of a software 

system.  This dissertation uses portions of the techniques noted in this chapter to develop 

a method capable of identifying, depicting, and computing the elements of Software 

Safety based on the established foundation of the current state of the art. 
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G. CHAPTER ENDNOTES 

1. Comparisons of Safety Definitions 

DISSERTATION DICTIONARY146 INDUSTRY 

Software Flaw: A specific item 
that detracts from the operation 
or effectiveness of the software 
system without resulting in a 
failure or loss of operability.  A 
software flaw does not result in 
a failure.  A flaw may reduce the 
aesthetic value of a product, but 
does not reduce the system’s 
ability to meet development 
requirements.   

Flaw: A physical, often 
concealed imperfection. 

Flaw: An error of commission, 
omission, or oversight in an 
information system (IS) that 
may allow protection 
mechanisms to be bypassed.147 

Software Faults: An 
imperfection or impairment in 
the software system that, when 
triggered, will result in a failure 
of the system to meet design 
requirements.  A fault is 
stationary and does not travel 
through the system. 

Fault: 1.  A weakness: defect.  
2. A mistake: error 

Fault: 1.  An accidental 
condition that causes a 
functional unit to fail to perform 
its required function.  2. A 
defect that causes a reproducible 
or catastrophic malfunction.148 

Fault: The preliminary 
indications that a failure may 
have occurred.149 

Reactionary Type Faults: A 
fault characterized by an 
inability of the system’s logic to 
react to acceptable values of 
inputs, as defined in the system 
requirements. 

Reactionary: Marked by 
reaction. 

Reaction: 1.  Response to a 
stimulus.  2.  The state resulting 
from such a response.   

None 

                                                                                                                                                 
146 The Merriam-Webster’s Collegiate Dictionary, Tenth Edition, Merriam Webster, Incorporated; 

Springfield, Massachusetts; 1999. 
147 National Information Systems Security (INFOSEC) Glossary, Rev 1, NSTISSI num. 4009; January 

1999. 
148 T1.523-2001 American National Standard for Telecommunications - Telecom Glossary 2000, T1A1 

Technical Subcommittee on Performance and Signal Processing; Washington, D.C.; 15 December 
2000. 

149 NASA – STD – 8719.13A, Software Safety, NASA Technical Standard, National Aeronautics and Space 
Administration; 15 September 1997. 
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DISSERTATION DICTIONARY146 INDUSTRY 

Handling Type Faults: A fault 
characterized by an inability of 
the system’s logic to handle 
erroneous entries or parameters 
out of the normal bounds of the 
system. 

Handling: An act or instance of 
one that handles something. 

Handle: To direct, execute, or 
dispose of. 

 

None 

Software Failure: The state in 
which a system has failed to 
execute or function per the 
defined requirements due to a 
design fault.  Failure is usually 
the result of an inability to 
control the triggering of a 
system fault.  Faults can be 
categorized in one or more of 
four types, depending on the 
circumstances leading to the 
failure and the resulting action.  
Failures can be further divided 
into one of two categories based 
on the source of the failure. 

Failure: 1.  The condition or 
fact of not achieving the desired 
end or ends.  2.  The cessation of 
proper functioning. 

Failure: The temporary or 
permanent termination of the 
ability of an entity to perform its 
required function.150 

Failure: The inability of a 
computer system to perform its 
functional requirements, or the 
departure of software from its 
intended behavior as specified in 
the requirements.  Failure can 
also be considered to be the 
event when either of these 
occurs, as distinguished from 
"fault" which is a state.  A 
failure is an event in time.  A 
failure may be due to a physical 
failure of a hardware 
component, to activation of a 
latent design fault, or to an 
external failure.151 

Resource Based Failures 
(RBF): Failures associated with 
the uncommanded lack of 
external resources and assets.  
Resource Based Failures are 
predominantly externally based 
to the logic of the system and 
may or may not be software 
based. 

Resource: 1.  Something that 
can be looked to for support or 
aid.  2.  An accessible supply 
that can be withdrawn from 
when necessary. 

None 

                                                                                                                                                 
150  T1.523-2001 American National Standard for Telecommunications - Telecom Glossary 2000, T1A1 

Technical Subcommittee on Performance and Signal Processing, Washington, D.C.; 15 December 
2000. 

151 Computer Science Dictionary, Software Engineering Terms, CRC Press; ver. 4.2; 13 July 1999. 
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DISSERTATION DICTIONARY146 INDUSTRY 

Action Based Failures (ABF): 
Failures associated with an 
internal fault and associated 
triggering actions.  Action Based 
Failures contain logic or 
software–based faults that can 
remain dormant until initiated by 
a single or series of triggering 
actions or events. 

Action: 1.  The process of acting 
or doing.  2.  An act or deed. 

None 

Software Malfunctions: A 
malfunction is the condition 
wherein the system functions 
imperfectly or fails to function at 
all.  A malfunction is not defined 
by the failure itself, but rather by 
the fact that the system now fails 
to operate.  The term 
malfunction is a very general 
term, referring to the operability 
of the entire system and not to a 
specific component. 

Malfunction: 1.  To fail to 
function.  2.  To function 
abnormally or imperfectly. 

Malfunction: The inability of a 
system or component to perform 
a required function; a failure.152 

Software Hazards: The 
potential occurrence of an 
undesirable action or event that 
the software based system may 
execute due to a malfunction or 
instance of failure.   

Hazard: 1.  A change 
happening: ACCIDENT.  2.  A 
chance of being harmed or 
injured. 

Hazard: Existing or potential 
condition that can result in or 
contribute to a mishap.153 

Invalid Failure: “A failure that 
is, but isn’t” (1) An apparent 
operation of the primary system 
that appears as a failure or defect 
to the user but is actually an 
intentional design or limitation; 
(2) A developmental 
shortcoming resulting from the 
developer not designing the 
system to the expectations of the 
user; (3) The operation of the 
system in an environment for 
which the system was not 
designed or certified to function. 

Invalid: not valid: 1.  Being 
without foundation or force in 
fact, truth, or law.  2.  Logically 
inconsequent. 

None 

                                                                                                                                                 
152  Computer Software Dictionary, ComputerUser.com Inc., Minneapolis, Minnesota; 2002. 
153  NASA – STD – 8719.13A, Software Safety, NASA Technical Standard, National Aeronautics and Space 

Administration; 15 September 1997. 
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DISSERTATION DICTIONARY146 INDUSTRY 

Minor Flaw: A flaw does not 
cause a failure, does not impair 
usability, and the desired 
requirements are easily obtained 
by working around the defect. 

Minor:  1.  Inferior in 
importance, size, or degree: 
comparatively unimportant.  2.  
Not serious or involving risk to 
life <minor illness> 

None 

Latent Failure:  A failure that 
has occurred and is present in a 
part of a system but has not yet 
contributed to a system failure. 

Latent:  Present and capable of 
becoming though not now 
visible, obvious, or active. 

None 

Local Failure: A failure that is 
present in one part of the system 
but has not yet contributed to a 
complete system failure.   

Local:  1.  Characterized by or 
relating to position in space: 
having a definite spatial form or 
location.  2.  Of, relating to, or 
characteristic of a particular 
place: not general or 
widespread: of, relating to, or 
applicable to part of a whole. 

None 

Benign Failure: A failure 
whose severity is slight enough 
to be outweighed by the 
advantages to be gained by 
normal use of the system. 

Benign:  Of a mild type or 
character that does not threaten 
health or life <a benign tumor>: 
Having no significant effect. 

None 

Intermittent Failure: The 
failure of an item that persists 
for a limited duration of time 
following which the system 
recovers its ability to perform a 
required function without being 
subjected to any action of 
corrective maintenance, possibly 
recurrent. 

Intermittent:  Coming and 
going at intervals: not 
continuous. 

None 
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DISSERTATION DICTIONARY146 INDUSTRY 

Partial Failure: The failure of 
one or more modules of the 
system, or the system’s inability 
to accomplish one or more 
system requirements while the 
rest of the system remains 
operable. 

Partial:  Of or relating to a part 
rather than the whole: not 
general or total. 

None 

Complete Failure: A failure 
that results in the system’s 
inability to perform any required 
functions, also referred to in 
military and aviation circles as 
“Hard Down.”  Aviators and 
military members refer to a 
system that is completely broken 
and requires extensive repair as 
“Hard Down”, while a working 
system is referred to as “Up”: 

Complete:  1.  Brought to an 
end as concluded <a complete 
period of time> 2.  Fully carried 
out as thorough or total and 
absolute <complete silence> 

Complete failure:  A failure 
that results in the inability of an 
item to perform all required 
functions.154 

Cataclysmic Failure: A sudden 
failure that results in a complete 
inability to perform all required 
functions of an item, referring 
both to the rate in which the 
system failed, and to the severity 
degree of the Mishap that 
resulted from the failure.   

Cataclysmic:  A momentous 
and violent event marked by 
overwhelming upheaval and 
demolition; broadly: an event 
that brings great changes. 

As Catastrophic failure:  A 
sudden failure that results in a 
complete inability to perform all 
required functions of an item.155 

 

                                                                                                                                                 
154  Nesi, P.; Computer Science Dictionary, Software Engineering Terms, CRC Press; 13 July 1999, 

http://hpcn.dsi.unifi.it/~dictionary. 
155  Nesi, P.; Computer Science Dictionary, Software Engineering Terms, CRC Press; 13 July 1999, 

http://hpcn.dsi.unifi.it/~dictionary. 
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III. COMMON TRENDS TOWARDS FAILURE 

“Software reliability is not identical to safety, but it is certainly a prerequisite.”156 
 

– J. Dennis Lawrence, Lawrence Livermore Laboratory 
 
As with the quote by Mr. Lawrence, there is a distinct but related difference 

between safety and reliability, as there is between safety and risk.  For the purpose of this 

dissertation, reliability is understood to be the probability that a software system will 

perform its required function(s) in a specified manner over a given period of time and 

under specified or assumed conditions.  Despite the fact that a system operated reliably 

over an extended period of time, it is still possible that an unsafe incident could occur if 

the design elements did not require safe operation.  Safety is understood to be the measure 

of probability that a software system will not perform a hazardous event during its normal 

course of operation.  A software system may prevent the occurrence of an unsafe incident, 

but fail to meet designed system requirements.  A supposed synonym to safety and 

reliability is the term correctness – in that the “system worked correctly.”  Correctness 

can be referred to as the combination of the two values, specifically that the software 

system correctly prevented the occurrence of an unsafe event while performing functional 

requirements, or to the degree that the system is free from faults in its specifications, 

designs, and implementations.”157. 

In an attempt to outline and catalog the common flaws of software development 

and employment, this author has found a definite lack of information.  Investigation has 

revealed an almost intentional or deliberate lack of detailed information on the subject of 

software failure.  Many organizations and companies do not detail, make public, or admit 

their flaws and errors to prevent self–incrimination.  In a popular article co–authored with 

De Marco, Barry Boehm noted a pessimistic and pragmatic view of self–admission by 

                                                                                                                                                 
156 Lawrence, J. Dennis; An Overview of Software Safety Standards, University of California, Computer 

Safety & Reliability Group, Fission Energy and System Safety Program, Lawrence Livermore 
National Laboratory; Livermore, California; 01 October 1995. 

157  IEEE Standard Computer Dictionary, A Compilation of IEEE Standard Computer Glossaries, 
Institute of Electrical and Electronics Engineers, New York, New York; 1990. 
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stating, "doing software risk management makes good sense, but talking about it can 

expose you to legal liabilities.  If a software product fails, the existence of a formal risk 

plan that acknowledges the possibility of such a failure could complicate and even 

compromise the producer's legal position."158 

Previously, much of the information about software failure existed only as 

investigative reports in the press or in technical reviews about high–profile failures.  

Many of these reports critiqued and postulated based on the limited facts of the failures.  

NASA, as a public entity, is required by its charter to report to the American public of its 

success as well as its failures.  In keeping with this charter, NASA recently has taken 

advantage of the Internet to electronically post all of its proceedings regarding the recent 

failure of the Mars Explorer Missions.  This incident has made available a wealth of 

knowledge regarding software failure and safety in the government sector.  It should be 

noted that most of the findings of private sector failures are based on second and third 

party sources, with the exception of those facts directly revealed as legal testimony in a 

judicial prosecution.  This chapter will outline some of the key elements that lead to 

Software Safety failure, based on the limited facts available. 

The development of High Assurance Systems requires a dedicated System Safety 

process.  Software Safety is then compromised whenever the system is developed using 

unrefined processes, without sufficient supervision, and without a dedicated test and 

certification plan.  Safety is further compromised when the technology lacks the ability to 

control or prevent a hazardous event.  A paper released over a decade ago critical of 

Software Safety still applies, stating that, “Traditionally, Engineers have approached 

software if it were an art form.  Each programmer has been allowed to have his own style.  

Criticisms of software structure, clarity, and documentation were dismissed as ‘matters of 

taste.’  In the past, engineers were rarely asked to examine a software product and certify 

that it would be trustworthy.  Even in systems that were required to be trustworthy and 

reliable, software was often regarded as an unimportant component, not requiring special 

                                                                                                                                                 
158 Boehm, B; De Marco, T; Software Risk Management, IEEE Software, Institute of Electrical and 

Electronics Engineers, Inc.; May-June, 1997. 
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examination.  In recent years, however, manufacturers of a wide variety of equipment 

have been substituting computers controlled by software for a wide variety of more 

conventional products.  We can no longer treat software as if it were trivial and 

unimportant.  In the older areas of engineering, safety–critical components are inspected 

and reviewed to assure the design is consistent with the safety requirements…  In safety–

critical applications we must reject the 'software–as–art–form' approach.”159  Software 

Safety is not benefited by aesthetic quality but rather by functionality, completeness, and 

reliability. 

After a review of available material, much of it sensitive, it is evident that there 

are repetitive triggers that contribute to the failure of software systems and the production 

of unsafe events.  These triggers can occur in either or both of the design or 

implementation stage of a software system’s lifecycle.  The causes of Software Failure 

can be generalized into three basic categories: 

• That software fails because it is used outside of its developed limits as 

established by system requirements, 

• That software was developed incorrectly in violation of system 

development requirements, or 

• That system requirements were flawed and failed to prevent software 

failures. 

In many cases, system failures were left undiscovered because the software was 

not sufficiently tested.  Each of these categories can be further decomposed into 

subcategories that detail the specific causes of software failure.  In some cases, the 

symptoms of failure cross over multiple categories and subcategories due to the 

complexity of the system or failures in design.  Software failure and safety violation 

subcategories include: 

                                                                                                                                                 
159 Parnes, David Lorge; Education of Computing Professionals, IEEE Computer, vol. 23, num. 1, pg. 17-

22, Institute of Electrical and Electronics Engineers, Inc.; January 1990. 
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• Incomplete and Incompatible Software Requirements 
• The Lack of System Requirements Understanding 
• Completeness 
 

• Software Developed Incorrectly 
• Effects of Political Pressure on Development 
• The Lack of System Understanding 
• The Inability to Develop 
• Failures in Leadership in Development 
• Development with a Lack of Resources 
 

• Implementation Induced Failures 
• Software Used Outside of its Limits 
• Over Reliance on the Software System 
 

• Software Not Properly Tested 
• Limited Testing Due to a Lack of Resources 
• Software Not Fully Tested Due to a Lack of Developmental 

Knowledge 
• Software Not Tested and Assumed to be Safe 
 

Table 4 Software Failure Cause and Effects 

A. INCOMPLETE AND INCOMPATIBLE SOFTWARE REQUIREMENTS 

Despite the best of intentions and highest standard of software development 

practices, the existence of improper or incomplete system requirements creates as 

fruitless a development environment as one that has incapable developers.  The 

development process is founded on the bedrock established by system requirements.  Any 

crack or fissure within that foundation could potentially result in the failure of the system 

to prevent an unsafe event. 

1. The Lack of System Requirements Understanding 

When developers fail to understand the proper intended purpose of a system that 

they are designing, it is possible that system requirements may become incomplete and 

not provide critical functionality.  It is essential that the requirements cover both the 

obvious as well as obscure functional needs of the system.  To ensure that even the most 
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obscure requirement receives proper consideration, the design team must clearly 

understand all possible idiosyncrasies of the system. 

The design of a system requires the thorough understanding of the developers to 

the system’s intended functionality.  If a developer might overlook requirements that the 

user would intend to exist, then the lack of functionality would be tantamount to a 

programming fault.  Where the user might expect a specific reaction from the system in 

response to an action, the loss of implied functionality might result in any of a series of 

unanticipated results. 

Software Safety is reliant on the system functioning within the bounds and 

limitations established by the requirements, assuming that the requirements incorporate 

adequate safety criteria and accurately depict the proper functioning of the system.  It is 

essential to ensure that requirements correctly reflect the needs of the system as well as 

the anticipated functionality and bounds expected by the user.  Chapter V.E.1 of this 

dissertation will present a method for graphically depicting the process flow of the 

system which can then be reviewed by users and developers to ensure that critical 

functions are well understood and agreed upon early in the development process. 

2. Completeness 
Software functional testing is usually based upon compliance with established 

system development requirements.  In cases where the requirements are incomplete or 

have holes that could result in unknown functional events, then the reliability and safety 

of the system is called into question.  It should be possible to trace a software process 

from start to finish; identifying each of the decisions, actions, and interrupts that the 

process may encounter.  It should also be possible to trace the requirements of a system 

through the entire function of the system, from each expected action and reaction to meet 

the functional requirements of the system.  Failing to trace the functional requirements 

and ensure validity and inclusiveness can result in a system that is incomplete and prone 

to developmental failure. 
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As with a circle, each point on the curve is required to complete the figure, 

looping a line back around onto itself – from start to finish.  This dissertation presents a 

pictorial process that permits the depiction and assessment of system requirements, as 

they apply to system safety, to trace the system process from start to functional 

completeness. 

B. SOFTWARE DEVELOPED INCORRECTLY 

Many software failures are directly related to the way in which the software 

system is developed.  The environment, methodology, and skill of the developer all factor 

to determine the ability of the system to prevent failure and the occurrence of a hazardous 

event.  Additionally, the interaction between the developer and the user and between the 

developer and the domain experts compliment the ability of the system to prevent failures 

and hazardous events.  It has been noted on countless occasions that it costs more to 

develop a product that fails than it does to develop new theories, test them by experiment 

and peer review, and then to develop designs based in these theories.160  The cost of 

failed development includes the extra costs of redevelopment, repair, and compensation 

for items damaged due to system failure. 

1. Political Pressure 
While the Challenger Space Shuttle Disaster of January 28th, 1986 was initially 

blamed on the design and use of the solid rocket boosters (SRB), further investigation 

revealed a trail of software errors that failed to prevent the mishap.  During pre–launch 

workups, a decision was made to remove a key set of booster rocket sensors and replace 

them with a less functional set due to their cost, time for development, and the 

“importance of the mission”.  It was later revealed "there was a decision along the way to 

economize on the sensors and on their computer interpretation by removing the sensors 

on the booster rockets.  There is speculation that those sensors might have permitted 

earlier detection of the booster–rocket failure, and possible early separation of the shuttle, 

                                                                                                                                                 
160 Hoare, C A R; Algebra and Models, SIGSOFT'93 Proc of the 1st ACM SIGSOFT Symposium on the 

Foundations of Software Engineering; 1993. 
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consequently saving the astronauts.  Other shortcuts were also taken so that the team 

could adhere to an accelerated launch sequence."161  The Chicago Tribune later reported, 

"…that poor organization of shuttle operations led to such chronic problems as crucial 

mission software arrived just before shuttle launches and the constant cannibalization of 

orbiters for spare parts."  Political pressure, media relations, and NASA desire to 

stimulate public confidence in the space agency resulted in NASA executives making 

emotional judgments on critical decision points.  The compressed launch window, public 

affairs campaign, and attempt to put the first civilian into space (a schoolteacher) 

distorted the decision making process and resulted in the modification and removal of 

critical software components.  While these sensors might not have prevented the breakup 

of the SRB, they could have given the crew sufficient time to react to the failure and 

prevent the loss of the Space Shuttle and lives of its seven astronauts. 

Political pressuring, infighting, empire building, and self–agendas all jeopardize 

the success of Software Development. 

Engineering is not a science that can succeed through impulsive emotions or 

through compelled deduction. 

Engineering requires mental stimulation, bounded within the resources of 

development, constrained by the ability to certify what is created.  Software Development 

is no different then any other field of engineering, in that it can be distorted by the 

external pressures of those who portray a desire for success but actually are self–serving 

in the outcome.  External pressures add a component to the development process that 

falls outside the confines of metrics by adding a variable of human emotion.  This 

variable results in a component that is not designed using acceptable methodologies, to a 

realistic timeline, or resourced sufficiently; eventually resulting in a system devoid of 

safety and a threat to the public. 
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The Navy’s first “Smart Ship” Yorktown has been a direct consequence of the ills 

of political pressure.  The highly publicized software failures of the ship have been 

directly attributed to decisions and coercions made outside of the development effort.  

Military leaders insisted that the ship deploy to meet specified timetables, regardless of 

the objections of senior developers.  The ship prematurely set sail with inadequate 

operating systems and flawed program logic, both chosen and developed under immense 

political pressure.  After an embarrassing failure in which the Yorktown was rendered 

dead in the water, the Deputy Technical Director of the Fleet Introduction Division of the 

Aegis Program Executive Office, stated that, “Because of politics, some things are being 

forced on us that without political pressure we might not do…”162, 163 

2. The Lack of System Understanding 
Professionals have cynically written of the relationship between Software 

Engineers and customers, stating that, "Either I have to learn enough about what the users 

do to be able to tell them what they want, or they have to learn enough about computers 

to tell me."164 

Today’s software systems are required to be more advanced and sophisticated to 

keep up with the demands and complexities of our modern society.  These complexities 

lead to a breed of software tailored around specialized requirements and unique logic.  

Software systems have advanced from the basic single purpose systems to the seemingly 

unbounded application of today’s systems.  These advances have required new forms and 

tools for development, new languages and compilers, and an increased knowledge of 

system operation.  When developers do not understand how a system is to function, how 

the development tools are integrated or utilized, or understand the limits and logic of the 

requirements, the system is destined for defect and failure.  John Whitehouse was quoted, 

regarding the certification of Software Engineers, that, “It is my contention that the vast 

                                                                                                                                                 
162  Slabodkin, Gregory, Software Glitches Leave Navy Smart Ship Dead In The Water, Government 

Computer News, Government News; July 13, 1998. 
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majority of software defects are the product of people who lack understanding of what 

they are doing.  These defects present a risk to the public..."165 A failure to understand the 

system being designed is a direct hazard to Software Safety. 

On March 28th, 1979, the Three Mile Island nuclear power plant experienced a 

blockage in one of the feed pipes of the reactor cooling system.  With the feed pipe 

blocked, the fuel rods within the reactor core began to increase in temperature from their 

normal operating limit of 600° to well over 4000°.  The thermocouples used to measure 

the reactor core temperature were limited to only 700°.  Above that limit, the instruments 

were programmed to return a string of question marks in place of the numerical value of 

the temperature.  The reactor system responded correctly by securing turbine operation 

when the temperature rose above its assigned limit.  The safety breakdown occurred 

when controllers failed to realize the extent of the temperature gain and that it would 

soon result in a melt down of the nuclear material if it were not controlled.  The 

developers did not realized nor plan for their thermocouples to track temperatures above 

that 700° mark due to their lack of understanding of nuclear reactor cores and their 

method of incorporation.  The initial trigger of the incident was a human securing the 

wrong valve.  The mishap occurred when the safety system failed to protect the reactor 

because the developer did not comprehend the system’s requirements.166 

System requirements are not derived arbitrarily.167 

They do not exist in a vacuum but rather in the open environment with an infinite 

number of possible stimulations and limitations.  “Software development usually begins 

with an attempt to recognize and understand the user's requirements…  Software 

                                                                                                                                                 
164 Williams, Marian G.; Begg, Vivienne; Translation between Software Designers & Users, Comm ACM, 
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166 Neumann, Peter G.; Computer Related Risks, Addison-Wesley Publishing; 1995. 
167 Berzins, Valdis; Luqi; Yehudai, Amiram; Using Transformations in Specification-Based Prototyping, 

IEEE Transcript on Software Engineering, vol. 19, num 5, pg. 436-452, Institute of Electrical and 
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developers are always forced to make assumptions about the user's requirements…”168  

Often the user, and in many cases the developer, has an incomplete understanding of how 

the system should function or how to develop that functionality.  The safety of a software 

system can be directly related to the level of understanding that the developer has of the 

product being designed.  His understanding of requirements and functionality apply to the 

structure and completeness of the system.  Failing to grasp such an understanding results 

in a system with holes, flaws, and inherent weaknesses.  When developers are 

experienced with and knowledgeable about the technology to be developed, the potential 

for hazard avoidance is significantly increased. 

In November of 2000, Raytheon was forced to explain to the Department of 

Defense why it was over a year behind schedule producing an upgraded radio 

communications system for the Northrop Grumman B–2 Stealth Bomber.169   As the 

number three U.S. defense contractor and renowned for its ability to produce high–

quality communications electronics, Raytheon was awarded a contract to outfit 21 Air 

Force bombers with a new suite of radios.  These radios would allow B–2 crews to 

receive improved voice, imagery, and targeting data via un–jammable UHF and VHF 

satellite links.  The contract was awarded with the understanding that Raytheon would 

produce the equipment with little development, instead only improving on the existing 

system base.  During the development, Raytheon made numerous changes to the software 

design without completely understanding the ramifications and functions of the system or 

reliant subsystems.  Despite Raytheon’s previous success, the development process was 

more difficult and time–consuming than they had forecast.  Raytheon continued to 

attempt to develop the replacement system, rescheduled for delivery by June 2001.  Due 

to the overrun and continued research and development, Raytheon will absorb over $11.2 

million in cost overruns. 

                                                                                                                                                 
168 Tsai, Jeffrey J P; Weigert, Thomas; Jang, Hung-chin; A Hybrid Knowledge Representation as a Basis 
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3. The Inability to Develop 
Safety-based software development is the combined function of applied 

mathematics, logic and reasoning, resource management, science, artistry, aesthetics (See 

Figure 9).  In its nature, the true development of software is an engineering discipline.  

That discipline is built upon a foundation of proven principles and methods that, when 

properly applied, give some measure of protection and security to the development 

process.  No principle or method is infallible or guarantees perfection, but what they do 

provide is guidance and structure compounded upon from previous experience.  Today’s 

software systems fail to benefit from historical experience when developers do not utilize, 

or lack the ability to utilize, such proven methods. 

 

Figure 9 The Composite Pallet of Software Engineering 

Leveson & Turner wrote in their analysis and summary of the Therac–25 

accidents that, “The mistakes that were made are not unique to this manufacturer but are, 

unfortunately, fairly common in other safety–critical systems…  It is still a common 

belief that any good engineer can build software, regardless of whether he or she is 

trained in state–of–the–art software–engineering procedures.”170  Developing software is 
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not a cookie cutter process where one can go from concept, to keyboard, to code and 

expect a product without the risk of failure. 

Safety–critical software demands the developer to utilize methods and procedures 

that are designed with hazard prevention in mind.  Such methods were introduced and 

reviewed in Chapter II.E of this dissertation.  Due to the complexities and non–intuitive 

nature of some methods, their incorporation may be beyond the level of novice 

developers and are easily overlooked.  Some methods were noted for their lack of 

specific instruction on how to prevent unsafe events through development; rather, these 

methods focused on the philosophy of prevention through development practices tailored 

to specific systems.  As noted in the review of predominant safety standards, many lacked 

a specific methodology for determining the safety of the system, leaving the 

determination and process to the discretion of the developer. 

A system’s safety is directly related to the developer’s ability to influence his 

design through the application of these safety philosophies.  Historically, a predominant 

number of software failures can be correlated to a procedural failure to follow accredited 

methods.  This dissertation introduces a method that is not only intuitive to the developer, 

but is also simplistic and straight forward in its approach.  While previous methods 

expounded on the philosophy of Software Safety, this dissertation outlines a procedure 

and process for improving Software Safety through standardized assessment and 

identification of the system process and hazards. 

4. Failures in Leadership = Failures in Software 
When a system begins to show signs of failure even before the development is 

complete, the design team is forced to shift from Software Engineers to firefighters.  An 

organization that is “fire fighting” has no ability or resources to actually fix system 

failures while continuing to maintain their original pace of development.  It becomes 

management’s responsibility to intervene and budget resources accordingly to prevent the 

entire project from collapsing in upon itself.  Each member of the development team 

must have the ability to rely on centralized project leadership to ensure that control is 

kept on the development of the system.  This control is to guarantee that one member’s 
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success is not jeopardized by the failure of another member of the team.  In the case of 

“fire fighting,” members need to be able to rely on leadership to guide the project through 

failure resolution and back into production.  Leadership has to ensure compliance to the 

philosophies of Software Safety. 

Software Engineering is the delicate balance of numerous disciplines that 

combine intangible ideas into a tangible product.  It becomes the project leadership’s task 

to find equilibrium between these disciplines to ensure that a gross amount of effort is not 

put towards one theme at the cost of another.  Evidence of such mismanagement can be 

found in systems that have an aesthetically pleasing user interface, yet lack the logic to 

control user inputs to generate an appropriate output. 

Management is forced to make a number of difficult decisions through the process 

of development.  One of those decisions includes the release of a software system before 

all of the bugs have been detected and corrected.  Leadership must decide when enough 

testing has been accomplished and that any remaining bugs that could be discovered are 

not significant as to cause an unsafe event.  Leadership can be swayed by misinformation 

and pressure to release a product before it is complete.  They may be worried that a 

competitor will beat them to market, that they will be penalized for delivering a product 

past deadline, or that other members of the team will be transferred, retired, or seek 

employment on other projects before completion.  When project leadership lacks the 

tenacity or drive to direct system development, the software project will fail to reach 

completeness in terms of functionality or safety. 

Management can inspire, structure, and encourage great things from 

developers.171  Management can not treat the development of software like the making of 

a device on an assembly line172 rather it must be treated with the proper care required to 

inspire intellectual thought.  A poor manager may lack leadership skills and berate his 
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developers by accusing them with, “Problems?  We do not have problems here.  We do 

not need principles or process or tools.  All we need is for you to find a way to make your 

people work harder and with more devotion to the company.” 173   At such point, 

management becomes part of the problem – lacking leadership, lacking guidance, the 

project founders, and eventually fails.  If it is released at all, the effort required to correct 

development errors brought on by such a period can potentially destroy all aspects of 

profitability, without providing any of the necessary system safety assurance. 

5. Building With One Less Brick – Resources 
Despite their differences in appearance, Software Engineering is not unlike other 

engineering disciplines in their requirement for developmental and operational resources.  

The requirement phase of development should outline required resources before actual 

system production commences.  Resources should include, but not be limited to: budget, 

schedule, personnel, hardware, software, operating system, development and testing 

tools, and a medium for employing the final product.  System development and operation 

falters or loses its momentum when resources are not adequately identified or provided.  

This loss of momentum consequently jeopardizes system safety as resources are 

reallocated from one process to the next in a desperate attempt to keep the system 

productive.  System operation crashes when operational resources are removed or limited 

beyond the level required for functionality. 

A recent Monterey Workshop emphasized the essential requirement for sufficient 

resources, stating that, “The demand for software has grown far faster then the resources 

we have to produce it.  The result is that desperately needed software is not being 

developed.  Furthermore, the nation needs software that is far more stable, reliable, and 

powerful then what is being produced today.”174  Today’s software systems stress greater 

demands on system resources by their requirements for specialized operating systems, 

memory access, and communication media.  Resources are not static, but should be 
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evaluated as dynamic in that they change and grow with the system, can be refined and 

reduced as the system becomes more efficient, or expands as the system matures.  

Software safety requires a sufficient reserve of system resources during development and 

operation or will risk failure when the system surges.  These resources must be available 

through the entire lifecycle of the product, from concept to disposal. 

NASA suffered a domino effect of failures during their attempts to visit the planet 

Mars at the end of the Twentieth Century.  The Mars Planetary Projects were some of the 

first to be developed under the new “Faster, Better, Cheaper” format.  Through the 

postmortem investigation, the NASA Inspector General admitted that FBC lacked the 

conventional safeguards and management process that protected previous systems.  The 

result was a series of software and hardware systems that were not developed or tested to 

the level required for deep space flight, stating that, “...missions completed using FBC are 

outside the strategic management and planning process, and progress toward achieving 

FBC cannot be measured or reported...  NASA has not adequately incorporated strategic 

human resources management into the Agency's strategic or performance plans.  Hence, 

NASA has not determined the appropriate number of staff or competencies needed to 

effectively carry out its strategic goals and objectives for its programs, most notably the 

FBC Mars Program, and may lose core competencies.” 175   NASA had redirected 

monetary and personnel resources from other projects to investigate and repair the Mars 

program after the loss of the MSP and MCO, resulting in shortfalls in development of the 

follow on and subsequent failure of the MPL.176  Reliability, and consequently safety, 

cannot be assured when developers lack the resources required to produce and operate 

safety–critical software systems. 
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C. IMPLEMENTATION INDUCED FAILURES 

The most likely time that a Software System could result in an unsafe incident is 

during its implementation or execution phase.  While a Software System is in the 

development phase, failures are contained and systems are rarely coupled with the 

material required to cause a hazardous event.  Once the system is taken out of the 

production environment and distributed, it is then matched with the components and 

substances that it is designed to control.  The same failure that was a benign event in the 

laboratory now becomes a critical event with direct exposure to the public. 

1. Software Used Outside of Its Limits 
Many software systems are developed “near–flawless” in their initial release.  

This initial release is likely based on a first generation set of requirements which may not 

take into consideration all of the intricate facets of the potential software system.  These 

requirements, when satisfied, result in an initially “acceptable product”.  As long as the 

product is used in the same fashion for which it was initially developed and certified, it 

should continue to function as per the system development requirements.  It is when the 

system is pushed beyond the intended functional envelope or incorporated into a 

subsystem for which it was not designed; that the system begins to function improperly 

with higher frequency and eventually fails. 

When requirements are not fully investigated to cover all potential uses of the 

system, when the system is not constrained to operate within the defined requirements, or 

when the system is forced to operate outside of the intended scope of the design, no 

certification can be given for the successful operation of the system.  Users may make 

general assumptions of the system’s operational limits on their experience with previous 

systems. 
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Testing may not reveal all of the potential hazards of the system’s operational 

scope as most testing methods are designed to ensure requirement satisfaction.  Testing 

must be conducted to the negative satisfaction of requirements, in that a system’s 

operational test is conducted to determine what would happen should the software 

function outside of its limits or if that limit is capable of being exceeded. 

Such failures can be directly attributed to shortcomings in the software system’s 

requirements.  Had the requirements been developed to properly constrain the system the 

potential for such a failure would be reduced.  Documentation should include the proper 

limits of system’s operation as well as the controls that ensure these limits.  Should a 

hazard result if a system were to be used outside of its limitations, documentation should 

include the potential effects.  Today’s systems may not include such dire predictions, as 

the developer may fear such revelations might deter the marketing effort. 

Take for example the Patriot Missile Defense Failure that left 28 U.S. military 

members dead and another 98 wounded when the system failed to track and intercept an 

incoming Iraqi Scud Missile.177  The Patriot Missile system was initially designed as a 

Surface to Air Missile (SAM) intended to intercept and destroy sub and super–sonic 

aircraft.  In 1990–1991, during Operation Desert Storm, the U.S. military deployed the 

Patriot as an Anti–Missile Defense shield to counter the ballistic missile threat of the 

Iraqi Scud Missile.  In addition to the Patriot being initially designed to track and destroy 

targets within the profile of an aircraft, it was also intended to be online only 

momentarily to engage such a target.  During the Gulf War, the deployed Patriot Batteries 

were left online continuously to be ready to strike at any incoming target. 

Investigation later revealed that the speed of the incoming Scud missiles, 

ballistically falling at over mach 6, compounded with a system induced mathematically 

rounding error resulted in an inability for the Patriot to engage Scud targets.  For each 

moment the system was left online, the rounding error increased the system’s bias outside 
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the targeting tolerance.  By the end of the Gulf War, the Patriot’s success rate was less 

then 9%.  On February 25th 1991, one such Iraqi Scud Missile penetrated the Patriot 

Missile shield and detonated on a military barrack in Dhahran, Saudi Arabia resulting in 

the greatest loss of human life from a single event during the conflict. 

When the Patriot system was deployed as an Anti–Missile Defense shield, the 

context of the deployment was different then that for which the system was tested and 

certified.  The set of potential hazards increased by the addition of new threats that the 

system was to protect against, namely the protection of allied service members against a 

missile threat.  The consequence of the potential hazards ranged from minor damage from 

falling debris to a direct missile strike.  Previously identified anti–aircraft missile defense 

threats can be included from previous assessments.  The triggers that could induce a 

system failure already existed in the system prior to its employment but went 

undiscovered.  In the new context for which the system was employed, the probability 

that an existing trigger could induce a failure increased with each minute the system was 

left on line. 

During the system development requirement phase, a software system’s 

requirements might include: 

• Assumptions about the system’s environment, 

• Functional capabilities required to control the system, 

• Algorithms or mathematical logic required to control the system, 

• Operating limitations or acceptable envelopes for operation, 

• Internal software tests and checks, 

• Error and interrupt handling, 

• Fault detection, tolerance, and recovery characteristics, 

• Safety requirements, and 

• Timing and memory requirements. 

When a system is pushed beyond the limits for which it was initially designed, its 

reactions can become unpredictable, chaotic, and even dangerous.  Algorithms and logic 
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that relied on predetermined baselines and limits are now faced with stimuli outside of 

the bounds for which they were developed.  System tests and checks may fail outright 

and render the system inoperable, despite what the user may feel is a normal operating 

regime.  Error handlers may be bypassed and overridden.  Memory may fail and safety 

restraints may become ineffective. 

On December 31, 1999, the world sat and waited for what may be called the 

greatest computer-induced disaster in the world as clocks rolled over to the new 

millennium.  Hundreds of thousands of computer systems performed computations based 

on a two–digit year format and were potentially unable to comprehend the change from 

1999 to 2000 to equate to one year.  Many systems were designed with the intent to 

function for only a short number of years, expiring well before the end of the century.  

Evidently these systems outlived their projected lives and now forced the user to either 

test the system for the “Y2K Bug”, have faith that the system would not fail on New 

Year’s Day, or purchase a new product that would be developed in a compatible format.  

The Millennium Scare affected systems ranging from medical, to military, to public 

infrastructure.  On January 1st, 2000, after a worldwide testing and verification campaign, 

only sporadic failures were recorded.  Despite the small number of failures that were 

recorded, the total losses directly attributed to the Y2K Bug ranged in the hundreds of 

millions of dollars.  The indirect costs are beyond computation.178 

From a safety aspect, the potential for a serious hazardous event due to the Y2K 

Bug was significantly increased due to the fact that: 

• Obsolete software systems were used to manage safety–critical systems. 

• There was no existing list of components or systems that were identified as 

compliant of non–compliant at the time of development. 

• Some software systems could not be tested without a risk to the critical 

systems that they controlled. 
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• If a system was deemed non–compliant, present–day system developers were 

no longer qualified or trained to work in early generation languages. 

• Changes to the software system had the potential of introducing new faults 

that may not be detected in time, due to the fixed deployment date. 

• Software customers with limited budgets might be unable to afford the 

expense of testing, repair, or replacement. 

The symptoms that affected the software industry due to the Y2K Bug are 

synonymous with any system that might be employed in a fashion that was never 

intended.  This includes systems utilized outside of their normal operating envelope or 

systems that become so obsolete that existing operating envelope no longer applies. 

To prevent the hazardous operation of a software system outside of its limits, 

developers must include: 

• Requirements with sufficient detail to specify proper system operational 

limits, 

• Direct controls capable of constraining system operation, 

• Documentation specifying the proper operational limits of the system, and  

• Documentation specifying the potential hazards of system operation 

outside of specified limits. 
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2. User Over–Reliance on the Software System 
Most safety–critical software systems can be categorized as either active or 

reactive systems: 

• Active Software Safety System – Directly controls some hazardous 

function or safety–critical system operation, to ensure that the operation of 

that system remains within some acceptable bound. 

• Reactive Software Safety System – Reacts to the operation of a hazardous 

function or safety–critical system, to react when the operation falls outside 

of some predetermined and acceptable bounds. 

These two terms are introduced in this dissertation to classify Software Safety 

systems by the method in which they handle or control hazardous operations. 

The requirements of system operation directly affect the type for which the 

system may be categorized into.  One system reacts to prevent a hazardous event while 

the other reacts to the occurrence of a hazardous event.  It is important that system users 

understand the difference between the two types as well as which type their particular 

system is.  When users do not understand the basic functionality of the system that they 

operate, it becomes the system that runs the user instead of the user that runs the system.  

When the user does not understand the operation of the system and removes himself as a 

sanity check to its operation, he becomes an additional fault within the system should it 

fail.  Such is the same consequence when the user places too much reliance on the 

operation of the system. 

On March 23rd, 1989 the 986–foot long supertanker Exxon Valdez ran aground on 

Bligh Reef, a charted natural obstruction, outside of its shipping lane in Alaska’s Prince 

William Sound, resulting in the largest domestic oil spill in the United States’ history.  

Investigation revealed a series of seamanship errors and lapses in judgment including the 

intoxication of the captain, the fatigued deck crew, and the over reliance on a navigation 

system.  During the final moments of the Exxon Valdez’s passage from the Trans 

Alaskan Pipeline into the Prince William Sound, the deck crew assumed the navigation 
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computer and autopilot would guide the vessel around any possible hazards and keep 

them inline with rules of the road.  As the supertanker failed to make its departure turn, 

the exhausted helmsman made fruitless rudder corrections using the helm’s manual wheel.  

The autopilot system did not disengage and consequently locked out the helmsman’s 

inputs.179  Fatigue and a lack of systems comprehension led the crew to not understand 

the limitations of the navigation computer or even how to disengage it when required.  

System checks verified that the navigation system had performed as designed and had 

followed the pre–programmed track.  The Exxon Valdez spilt over 10.8 million gallons 

of oil or approximately 1/5th of its cargo.  The spill cost the Exxon Corporation over $1 

billion in criminal pleas, restitution, and civil settlements, and an additional $2.1 billion 

for cleanup and recovery.180, 181 

Some software users have a tendency of becoming over reliant on their control 

systems without understanding the limitations of these systems or the consequences of 

their actions.  The complexities of today’s operations require automation systems 

controlled by countless microprocessors and software based logic systems.  Their 

operation is beyond the comprehension of most users.  For example, many users do not 

understand the intricate functions of today’s dishwasher with its multiple cycles, 

temperature controls, filters, heaters, and water conservation mechanisms; but will 

blindly put in dishes, silverware, and soap into the machine and expect everything to 

come out spotless by simply pushing the START button.  Many users do not even open 

the operator’s manual to personal or workplace related operating systems, yet still expect 

them to function intuitively. 

                                                                                                                                                 
179 Neumann, Peter G.; Computer Related Risks, Addison-Wesley Publishing; 1995. 
180 The Exxon plea was broken down into a Criminal Plea Agreement of $150 million with $125 million 

forgiven for cooperation, a Criminal Restitution of $100 million, and a Civil Settlement of $900 
million. 

181 The Exxon Valdez 10 Year Report, The Exxon Valdez Oil Spill Trustee Council, Anchorage, AK; 
1999. 
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D. SOFTWARE NOT PROPERLY TESTED 

Testing has the potential to demonstrate the inaccuracies and frailties in a system, 

as far as testing is executed properly.  Some tests evaluate the behavior of the system 

(Functionality) while other tests evaluate the consequences of behavior (Safety).  It is the 

assertion of this dissertation, that the occurrence of software based hazardous events is 

primarily a result of a failure in this testing.  Depending on the method of testing, there is 

no guarantee that there can be an accurate certification on the safety of the system.  

Edsger Dijkstra is noted for stating that testing proves that a program is free of mistakes, 

but cannot prove its correctness.182 

Testing failures include systems that are either not sufficiently tested or testing 

determined the probability of such hazards occurring were insignificant.  If done properly, 

despite its design, software can be inspected and given some level of functional assurance 

during and at the completion of development.  The dilemma is to determine the level of 

testing to be done, the manner of testing, and when testing has been determined sufficient.  

System testing is the final process in the development cycle that permits the recognition 

and identification of system weaknesses and vulnerabilities.  Each of those weaknesses 

has the potential for an unplanned event.  The significance and consequence of that event 

determines how unsafe that action will be. 

1. Limited Testing Due to a Lack of Resources 
Software Safety Testing requires the availability of specialized software, 

hardware, and trained personnel who are equipped and able to diagnose critical systems.  

These tools and techniques are neither inexpensive nor simplistic to master.  Software 

industry experts estimate that the United States government had budgeted over $30 

billion for the testing and conversion of non–compliant Y2K systems.  Further estimates 

predicted that Fortune 500 corporations set aside between $20 million and $200 million 

                                                                                                                                                 
182  Attributed to Edsger Wybe Dijkstra, Ian Sommerville, Software Engineering (6th Ed.), Addison-

Wesley, University of Lancaster; United Kingdom; 2001. 
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for the same effort.183  For companies unable to afford such a price, software users risked 

significant corporate losses, the threat of litigation, and even the risk to public safety by 

not validating or turning over their software inventory.  Software owners were 

overburdened with determining which software and hardware would be affected.  If 

identified, a decision would have to be made to repair or replace the software.  Either 

decision would require a new series of testing and re–integration of the product to ensure 

that new vulnerabilities were not introduced into the system.  The cost in time, monetary, 

and physical resources was prohibitive to many users and developers. 

The lack of dedicated testing resources directly affects the economic and 

personnel safety of the public at large.  The extra expense of time, specialized software, 

and trained personnel to test and validate software must be weighed against the potential 

damage.  Optimally, a system would be stress tested in an environment normally in 

excess of its rated capacities, conceivably in excess of 150% of its required level.184  This 

extra expense requires an outlay of resources beyond that which many organizations are 

prepared to spend.  In 1998, the Federation of American Scientists noted in their failure 

study of the Theater High Altitude Area Defense System (THAAD) that the lack of 

testing resources played a critical role in the failed development of the missile system.  

Specifically noted was the lack of sufficient testing timelines, management practices, test 

facilities, targets, and post production funding.185  The THAAD Development Team plans 

for the first operational missile to be deployed in 2007 from the Lockheed Martin Missile 

and Fire Control Plant in Pike County, Alabama. 186   The project currently has an 

estimated cost of over $14.4 billion for 1422 missiles and support equipment.187 

                                                                                                                                                 
183 Kuharich, Mark; How I Stopped Worrying and Learned to Love The Year-2000 Bug, The Software 

View, Amazon.com; 2000. 
184 16 Critical Software Practices, Software Program Managers Network, Integrated Computer 

Engineering, Inc.; 2001. 
185 Report of the Panel on Reducing Risk in Ballistic Missile Defense Flight Test Programs, Federation of 

American Scientist; 27 February 1998. 
186 THAAD Manufacturing Site Detected, Anti-Missile Defense, Janes’ Missiles and Rockets, Janes’ 

Information Group; 01 March 2001. 
187 Lockheed Martin Army Theater High Altitude Area Defense (THAAD) System, Static and Towed 

Surface to Air Missile Systems, USA, Janes’ Information Group; 26 January 2000. 



125 

One of the most valuable resources in software development is time.  Many 

testing methods require a significant amount of time to investigate all of the potential 

states for each requirement.  As system complexity increases, the number of potential 

states can increase exponentially.  Testers have to make a reasonable threshold 

assumption that they have tested “enough,” and then certify the effort complete.  An 

exhaustive testing of all possible states may be unfeasible, limited by time or technology.  

This assumption of satisfactory testing could very well lead to a false impression of the 

operation of the software system.  The certification of software performance must take 

into consideration the resources available for the test method, the formal process utilized, 

and the potential impressions that could be given for the test. 188 

2. Software Not Fully Tested Due to a Lack of Developmental 
Knowledge 

NASA stated its development philosophy best to: 

Know what you build. 
Test what you build. 
Test what you fly. 
Test like you fly.189 
 

Testing is more then the plugging in of specified values to receive specific results.  

It is the effort to find “bugs” within the system.  Hazard avoidance requires finding the 

important bugs – finding the bugs that will kill the system; the one–in–a–million instance 

that is not in the requirements; the bug that will create an out of control event that will 

kill or maim someone else.  Finding that one–in–a–million bug requires more then an 

understanding of software development but rather the understanding of the type of system 

that is being built. 

Developers, many times, are hired to build software systems based on their 

history of project success.  This decision though, may or not be based on their 

                                                                                                                                                 
188  Attributed to Edsger Wybe Dijkstra, Ian Sommerville, Software Engineering (6th Ed.), Addison-

Wesley, University of Lancaster; United Kingdom; 2001. 
189 Report on Project Management in NASA by the Mars Climate Orbiter Mishap Investigation Board, 

National Aeronautics and Space Administration; 13 March 2000. 
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understanding of the subject matter.  To bolster an organization’s knowledge base, 

developers hire subject matter experts who then may not be familiar with of software 

development.  Finally, developers employ a testing wing with a methodical approach to 

analysis, but may lack experience in employing the application in its natural environment.  

The result is the combination of three very talented groups of people who do not speak 

the same language nor follow the same philosophy for development. 

Engineering is the understanding of an initially unclear situation and selecting the 

best process to accomplish it. 190 , 191   The result of this misunderstanding has been 

reflected in the many Department of Defense system failures.  Currently, the agency is 

plagued by a lack of continuity between written requirement, developer’s interpretation, 

tester’s assumption of functionality, the assurance of safety, and the reality of field 

deployment.  Many systems cannot be tested on deployed units.  National security 

requires these units to be available for critical tasking.  Core users deployed worldwide 

are not available for developmental testing and critique.  Subject matter experts are only 

as current as their last day of military service.  When it comes time for system testing, the 

knowledge breakdown and limitations result in a product that is never pushed to real–

world limits.  We have proven in blood that the military battlefield is not the place to 

conduct “field tests” of unproven equipment. 

In the early 1980’s, Hitachi suffered from a pattern of failed projects and 

declining revenue.  In 1981, the company recorded over 1,000 product–related faults at 

customer sites.  Hitachi reviewed its development process and made a series of simplistic 

changes including the review of its analysis, design, code, and test process;192 the training 

of its consultants in basic Software Engineering principles; and refreshing its Software 

Engineers on the fundamentals of existing system.  Management believed that, "We learn 

                                                                                                                                                 
190 Dasgupta, Subrata; Design Theory and Computer Science: Processes and Methodology of Computer 

Systems Design, Cambridge University Press; New York, New York; 1991. 
191 Ramesh, Balasubramaniam; Dhar, Vasant; Supporting Systems Development by Capturing 

Deliberations During Requirements Engineering, IEEE Transcripts of Software Engineering, pg. 498-
510, Institute of Electrical and Electronics Engineers, Inc.; June 1992. 
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some things from success, but a lot more from failure," and that "If you detect too many 

faults reconsider design regulations, procedures, and management policies."  Using 

hindsight, proven testing, and development methods, Hitachi made a dramatic 98% 

reduction in its customer failure rate.  Quality assurance was improved by pairing the 

knowledge base with the product, resulting in a staff that knew what it was developing 

and understand how to test it to the client’s requirements. 

3. Software Not Tested and Assumed to Be Safe 
On June 4th, 1996, $500 Million of uninsured satellites were destroyed when their 

delivery platform, an Ariane 5 Space Launch Vehicle, was command destructed soon 

after leaving its launch platform.193  The Ariane 5 rocket was on its maiden launch as the 

upgrade to the existing Ariane 4 Launch Vehicle.  Moments after liftoff, a software based 

navigation unit that was certified for flight on the original Ariane 4 version failed from its 

incorporation with version 5.  The legacy 16–bit Inertial Reference System (IRS) had 

received an incompatible signal from an optimized 64–bit On–Board Computer (OBC), 

resulting in an unexpected Operand Error Failure.  The IRS had functioned flawlessly on 

previous version 4 events, and was designed to secure its operation 40 seconds after 

vehicle liftoff.  Due to the increased liftoff velocity of version 5 and the upgraded 

processing speed of the OBC, the IRS received mathematical bias values never before 

experienced in version 4.  Upon failure of the IRS, the rocket lost horizontal alignment 

control and rolled out of control until it was destroyed.  The 16–bit IRS was never tested 

using simulated inputs from the 64–bit OBC in an after launch environment because it 

was felt that the IRS’s success in version 4 met the functional requirements and quality 

assurance for version 5. 

Developers of the Ariane Rocket and others products have made costly 

assumptions by presuming their systems were faultless and hazard free by: 

                                                                                                                                                 
192 Onoma, Akira K.; Yamaura, Tsuneo; Practical Steps Toward Quality Development, IEEE Software 

Magazine, vol. 12, num. 5, pg. 68-77, Institute of Electrical and Electronics Engineers, Inc.; 
September 1995. 

193 See APPENDIX B.1 – ARIANE 5 FLIGHT 501 FAILURE 
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• The environment and method in which they were designed in, 

• The fact that the system functioned flawlessly in a previous environment, 

and  

• The fact that the system did not appear to be related to any critical 

components. 

The assumption or appearance of safety in no way outweighs the potential for 

system risk.  Operational failures typically are caused by poor design and implementation, 

inadequate checkout discipline, and pressures to move on to the next step.  Overlooking, 

short cutting, or bypassing the testing process results in a system that is simply unsafe. 

In 1995, the Intel Corporation distributed its Pentium II Processor with an 

embedded division fault due to a production based software error.  The division algorithm 

was missing only 5 values from its 1066–point look up table, the result of a “FOR–DO 

LOOP” error during loading.  The look up table was never verified.  Once the logic was 

committed to silicon, the error could not be repaired.  One software fault led to the 

creation of another software fault encoded into hardware.  This encoded fault would 

inaccurately compute floating–point divisions to the 4th decimal point.  While seemingly 

insignificant, this fault would compound into in accurate mathematical products for some 

spreadsheet, sciences, and control software systems that require results to a high degree 

of accuracy.  The microprocessors could not be reprogrammed and no acceptable 

software patch could handle the error.  Intel spent over $400 Million to repair or replace 

its flawed Pentium II product line. 

One cannot assume a system to be safe simply based on requirement satisfaction.  

As previously discussed in the Section III.C.1 of this chapter, most systems are evaluated 

based on methods of Requirements Based Testing.  These tests are pass/fail conditions 

designed to determine the system ability to meet defined requirements, assuming 

complete requirements.  Proper operation is assumed should the system satisfy 

development requirements.  This method of testing may not reveal all of the potential 

hazards of the system’s operational scope, limited by the extent of the testing method.  

Testing must be conducted to the negative satisfaction of requirements, in that a system’s 
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operational test is conducted to determine what would happen should the software 

function outside of its limits or if that limit is capable of being exceeded. 

E. CONCLUSIONS 

Software Safety Assurance is a very fragile undertaking.  It is not chaotic, but 

structured.194  It requires discipline and compliance to accepted methods of development 

and operation.  Newspapers, technical journals, and field periodicals each note multiple 

accounts of Software Safety failures, their faults, triggers, and hazardous results.  The 

majority of these failures in Software Safety can be defined within specific categories and 

subsequent subcategories.  It is less important to try to define a product within a category 

then it is to attempt to prevent it from failing in the first place.  By example, each of these 

failures posed a direct threat to the health, safety, and economy of the public.  Their 

successes go unnoticed, while their failures become national headlines. 

It is possible to measure the depth of each failure in terms of loss either 

monetarily, time, or human life.  The prevention of each of these incidents or the 

reduction of any measure corresponds to an increase in safety.  At present, the 

measurement of safety is arbitrary and without scale.  Would the Exxon Valdez accident 

been twice as safe if it had spilt half as much oil?  Would the Hitachi have been three 

times as successful if it had reduced two–thirds of its customer–based failures?  It is 

important to base the measurement of safety on the success of a system and the ability to 

reduce the likelihood of any hazardous event.  This measurement should be based on the 

lessons learned from the previous eleven subcategories and their examples.  Software 

Development is based on logic and patterns.  If it is possible to identify those patterns and 

modify them, then it is possible to develop safer software. 

                                                                                                                                                 
194 Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 

Postgraduate School; Monterey, California; September 2000. 
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IV.  CONCEPTUAL FRAMEWORK AND DEVELOPMENT 

"Computer programming has invigorated the study of formal systems, not just because a 
proper formalization is a prerequisite of any implementation, but because good 

formalisms can be very effective in understanding and assisting the process of developing 
programs." 195 

 
– Roland Backhouse 

 
Virtually every activity in life involves some level or chance or risk.  There is 

little dispute that the chance of a flipped coin coming up “heads” is 50:50 or that the odds 

of rolling a pair of sixes is 1:36.196  The odds of selecting the correct number on a 

spinning roulette wheel are 1:38, while the payoff is only 36 times the placed bet, giving 

the house a five percent advantage on each spin of the wheel. 197   Further, it is 

mathematically possible to determine the likelihood of dealing a Royal Flush as 

1:649,739 or 1.5391x10–6.198  The payoff or risk depends on the skill of the opponent and 

the money played to the pot. 

The world is filled with a multitude of events containing risks, probabilities, and 

profits that can be computed, depicted, evaluated, and displayed.  Measures, based on 

mathematic principles of statistics and probability, can be used to derive the occurrence 

value of even the most complex event.  The occurrence of software–based events is no 

more immune from mathematic measurement then any other logic based process.  The 

requirement is to determine which properties can be measured, what the resultant value 

scale will measured against, and the ability to have an affect on the measure.  When 

casinos and crooked gamblers of the American Wild West wanted to increase their 

winning margin, they used loaded dice, marked cards, and roulette brakes.  By careful 

                                                                                                                                                 
195 Backhouse, Roland; Chisholm, Paul; Malcolm, Grant; Saaman, Erik; Do-it-yourself Type Theory, 

Formal Aspects, Computer, vol. 1, num. 1, pg. 19-84; January - March 1989. 
196 Assuming a single roll of two six-sided dice. 
197 Assuming a 38-compartment roulette wheel numbered 1 to 36, plus additional slots of 0 and 00. 
198 Assuming a 52-card deck, being dealt from poker, a royal flush of five cards: an ace, king, queen, jack, 

and ten of the same suit.  4 / ( 52! / ((52-5)! * 5!) ) = 1/649,740.  Packel, E. W.; The Mathematics of 
Games and Gambling, Mathematics Association of America; Washington, D.C.; 1981. 
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analysis and developmental management, it is possible to “load” a software program to 

influence the corresponding probability of safety. 

Software Safety Development and Assurance is the field of Software Engineering 

that institutes methods of safety to produce a more stable product, capable of avoiding or 

mitigating hazardous events.  The philosophies of Software Safety Assurance can be 

pictorially and mathematically depicted once a decomposition is made of the methods of 

development, as they apply to safety.  Chapter I presents an introduction to the 

dissertation and delineated a set of variables that could be quantified and qualified 

through Safety Development.  Chapter II outlines the current discipline of Software 

Safety Assurance including motivations for development, an anatomy of failure, and 

current Safety Methods.  Chapter III discusses the prime causes of failure and specific 

examples of which will serve as a basis for triggers or objects in the Safety Metric.  

Chapter IV outlines the conceptual framework for Software Safety Assurance, Safety 

Metrics, and Safety Depiction. 

Despite significant efforts, this dissertation’s literature search has failed to 

discover a previously developed software metric that could define safety in a quantitative 

or qualitative format.  Subject matter literatures used in this dissertation topic are listed in 

the reference sections of this dissertation.  Additionally, the literature search has failed to 

find an acceptable pictorial depiction that could demonstrate software functionality as it 

applies to Software Safety.  It is the goal of this dissertation to satisfy both of these 

shortcomings, using the research previously noted in this study, combined with principles 

of statistics and mathematical logic.  It is essential to define a safety criterion to establish 

a baseline for the assessment.  This dissertation addresses the requirements for 

establishing a safety criterion, developing the assessment, and implementing corrective 

measures. 
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A. SAFETY DEVELOPMENT GOAL 

The Goal of Software Safety Assurance is to: 

• Measure the likelihood of a system to experience an unsafe action. 

• Identify triggers that could cause the system to experience an unsafe 

action. 

• Reduce the likelihood of a system to experience an unsafe action through 

proper development/redevelopment or inclusion of controls. 

• Re–Measure the likelihood of a system to experience an unsafe action. 

The Goal of the Software Safety Metric is to: 

• Provide a method to catalog system objects and characteristics that can be 

measured and evaluated to an established standard. 

• Provide a method for measuring the system objects and characteristics into 

quantitative values. 

• Provide a method for evaluating the measures through mathematical, logic, 

and analytical processes. 

The Goal of a Safety Depiction is to: 

• Pictorially depict the safety vulnerabilities of the software system. 

• Pictorially depict the potential propagation of safety failures through the 

system. 

• Present an efficient and aesthetic presentation of system safety for 

evaluation and development decision making. 
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B. METRIC DEVELOPMENT 

Proper metric development requires the creation of a metric that is:199 

• Robust – Capacity of being tolerant to variability of the inputs. 

• Repeatable – Different observers arrive at the same measurement, 

regardless of how many repetitions take place. 

• Simple – Uses the least number of parameters sufficient to obtain an 

accurate measurement. 

• Easy to calculate – Does not require complex algorithms or processes. 

• Automatically collected – It is possible to develop such that there is no 

need for human intervention. 

Metrics have the ability to remove emotion and bias from software development 

decision–making.  They are based on a standardized set of principles, agreed to at the 

commencement of the evaluation.  As a result, they present a standardized measure for 

comparing, contrasting, and summarizing the quality and worth of system components 

and methods.  Putnam and Mah noted that any discussion of metrics has to start with a 

foundation.  “Over the years, a consensus has arisen to describe at least a core set of four 

metrics.  These are: size, time, effort, and defects.”200  A Software Safety Metric is based 

on the foundation of these four principles, specialized by factors that directly affect safety.  

It is relevant to include a fifth element of Software System Complexity to denote a depth 

of convolution of the software element.  As with any foundation, there is some chipping 

away of the base to remove unwanted material and to smooth it for its proper purpose. 

1. System Size  
Requirements, functions (function points), processes, scripts, frames, methods, 

objects, classes, or lines of code are all possible measures of a system’s size.  Specific 

size does not necessarily cause a system to be safe or unsafe, rather size denotes the 

                                                                                                                                                 
199 Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 

Postgraduate School; Monterey, California; September 2000. 
200 Mah, Michael C; Putnam, Lawrence H. Sr.; Software by the Numbers: An Arial View of the Software 
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volume of the system.  If we assume that human error rates are constant, a ratio may be 

developed that relates errors to size based on historical data.  Such errors do not directly 

result in a hazardous event unless the specific fault has control of a hazardous event. 

Size does not necessarily infer a level of safety, nor does it infer a probability 

of failure. 

Size can exist as a related factor to system failure probability when it is assumed 

that a fault may potentially exist for a specific measure of code.  As the amount of code 

increases, the potential for further faults to exist increases, assuming a standard 

development practice, consistent system complexity, and the even distribution of faults.  

The failure to maintain a balanced development environment negates the measure of 

system size to safety.  As the practices and methods used to develop the system change, 

the relationship of fault to code size will change – either to the benefit or injury or the 

system.  Such a balance is required for a valid assessment of one system to another from 

size to size.  Typically, system size relates to the requirements of the system.  An analysis 

of stated requirements can be used to determine a prediction of system size, and generally 

remains constant for a given system.  Based on historical models, it is possible to suppose 

that the number of faults may increase with system size, while though the increase is not 

proportional to size.201  It cannot be assumed that requirements, or the compliance to such 

requirements, will guarantee the avoidance of a hazardous event.  In some cases, a 

hazardous event may be unavoidable, leaving the requirements to attempt the control or 

lessen the potential for such an occurrence.   

2. Time to Develop  
Hours, months, and years are all possible measures of a system’s time to develop.  

Time is a factor of the system’s size, complexity, method of development, and personnel 

actually executing the development.  While time does not directly apply to System Safety, 

its sub–components do have an effect.  Time affects safety when assessing personnel 
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turnover, system oversight and understanding of early generation against optimized 

components, and in the context of time critical development projects where a delay could 

fail to prevent a hazardous event (i.e., Y2K Bug). 

Time to Develop can serve as a positive and negative factor in the potential for the 

system failure development.202  When a development process is completed quickly, it can 

be assumed that the system was of minor complexity and thereby had a smaller potential 

for fault introduction.  However, this minor complexity may have little to do with system 

assumptions of safety criticality.  To the converse, it could be assumed that the system 

was completed quickly because critical procedures and requirements were overlooked 

and not resolved.  As additional time is spent on the development, the requirements may 

risk the chance becoming obsolescent or irrelevant, as they no longer apply to the product 

that they were intended to control.  As development time increases, the resulting system 

may not be completed in sufficient time to prevent a time critical hazardous event. 

When a development process exceeds its expected development time, the process 

may become safer as more time is spent to resolve errors, or there may be additional 

errors introduced as development continues.203  History has demonstrated that: 

• Additional errors are discovered as development time increases, 

• Additional errors can be potentially introduced through the 

redevelopment/correction of known errors, 

• Continued improvement and requirement modification can potentially 

introduce new errors that will require additional redevelopment.204 

Figure 10 shows a hypothetical depiction of the effects of an increased time to 

develop against complexity and error detection.  Actual scale values are based on the 

particular project and ability of the developers. 
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Figure 10 Time to Develop vs. Complexity and Error Detection 

The Time to Develop can be reduced by the use of proven COTS / GOTS 

products, proficient developers, and efficient development techniques.  COTS / GOTS 

products only provide a benefit to the system when they have been proven free of faults 

and can integrate seamlessly into the developing system without introducing additional 

failures.  Proving a COTS / GOTS product fault free is virtually impossible, as is proving 

that the interaction between the COTS/GOTS product and the application is fault free.  

An assumption of the degree of product correctness must be made and factored into the 

decision to use a COTS / GOTS product.  Decreasing system functionality with the intent 

to reduce the time to develop will result in an inability to meet system requirements.  A 

failure to meet system requirements could potentially result in the system’s inability to 

control hazardous events.  A failure to provide sufficient time to develop will result in the 

failure to develop the complete system, test, and identify potential faults. 

The balance between increased safety and increased development time is a fragile 

element that must be considered to improve software safety.  An equilibrium must be 

struck with sufficient flexibility to permit requirement completion in a judicious manner 

without introducing new hazards to the system. 
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3. Effort to Develop  
Man–hours, man–months, and processor–hours are all possible measures of a 

system’s effort to develop.  Effort is a factor of the time to develop versus verses the 

number of persons/assets required for the development period, compounded by the 

complexity of the system and aptitude of the resources.  Safety is directly affected by the 

complexity of the system and aptitude of the resources, and indirectly affected by the 

time required to develop.  You can not bake a 325° cake at 650° in half the time any more 

then you can expect to reduce the time to develop by half when you double the number of 

developers.  Software Development as with cooking, requires a controlled development 

process that measures the effort to develop based on existing assets, aptitudes, and 

complexities. 

Effort has historically been related to development risk and fault introduction.  As 

a system requires greater effort to be developed, the potential that the system will not be 

completed increases, frequently due to the depletion of resources.  As resources are 

stretched and the developers become weary from process, some portions of the system 

may fail to be developed.  The partial development may result in a lack of some hazard 

controls and the failure to identify potential faults.  Effort may be related to the 

complexity of the system, the abilities of the developers, and the size and scope of the 

requirements.  Various estimation methods, such as COCOMO or Putnam may be used to 

determine a perspective value for system development effort for a given set of 

requirements.205  While no direct measure exists to relate effort to safety, a correlation 

can be established that effort can be reduced by: 

• Refining the requirements, thereby making the system easier to develop, 

• Employing a greater quality of personnel, or 

• The use of more refined techniques and development tools. 
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While such a measure would benefit the state of the art of software engineering, the 

development of such a measure would require significant research and the modeling and 

would be beyond the scope of this dissertation. 

4. System Defects 
Failures per hour, errors per line of code, and failures per execution are all valid 

measures of system’s defects.  Defects are generally measured over time or against a 

measure of system size, referred to as frequency or rate.  Defects are an essential 

component of Software Safety, to the extent that the specific defect or fault has control 

over a hazardous event.  If the particular defect does not connect to a hazardous element 

or system design mitigates the defect’s propagation or flow, then the element is 

inconsequential to the measurement.  Defects found during system development through 

delivery can be referred to as quality, while defects discovered during the period of 

service can be referred to as reliability. 

5. System Complexity  
System Complexity may potentially detract from the safety of the system in cases 

where the development team is incapable of designing a system at such a level of 

intricacy.  The more complex the system, the more difficult it will be to develop and the 

greater the probability that a fault can then be coded into the system.  Complexity can be 

the result of two factors: 

• The requirements of the system, and 

• The desired method of development. 

It is difficult to reduce the complexities of system requirements and continue to 

meet system functionality.  System complexities can be managed by the use of qualified 

and proficient production team members experienced with the development of such 

requirements.  Additionally, it is possible to evaluate system development practices to 

determine the most safety prone method for meeting such requirements.  In some cases, 

the method chosen by some developers may introduce faults by their inherent 

complexities. 
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Many organizations and institutions have developed criteria (McCabe's 

Cyclomatic Number, 206  Halstead's Software Science, 207  and Fan–In Fan–Out 

Complexity208) for judging the complexity of a software system by evaluating the code 

for size, structure, and format.  While these measurements are beneficial to estimating the 

complexity of software development, they are not measurements of Software Safety.  

Many measurements of software complexity indicate the probability or risk of software 

development failure and not the risk of a hazardous event. 

In some cases, it may be necessary to introduce complexities to the system to 

increase safety.  In the case of the Boeing 777 Aircraft Data Bus, the system uses a nine–

fold redundancy composed of three asynchronous data channels, each channel made up 

of three independent lanes that utilize dissimilar hardware and software.  The 

complexities and effort required to develop and manage such a system are staggering, but 

the resultant safety product provides the coverage required to protect the aircraft from the 

loss of control and possible crash.209 

A Safety Metric is first derived from the four core Software Metrics including size, 

time, effort, and defects plus system complexity.  These measurements can be made early 

in the development process and updated as the system development becomes more 

mature.  In addition to these core components, safety requires a measured evaluation of 

specific hazards, degrees of hazards, protections and redundancies, stability, cost, 

restoration, and repair.  Each metric evaluates specific components of the software 

system’s development and lifecycle as they apply to safety.  From the combination of 

these components and metrics, it is possible to derive a measure of Safety – which is the 

ultimate goal of this dissertation, presented in a stepwise process in Chapter V. 

                                                                                                                                                 
206 McCabe, Thomas; Complexity Measure, IEEE Transactions on Software Engineering, vol. 2, num. 4, 

pg. 308-320, Institute of Electrical and Electronics Engineers, Inc.; December 1976. 
207 Halstead, Maurice H.; Elements of Software Science; New York, New York and Elsevier North-

Holland; 1977. 
208 Sommerville, Ian; Software Engineering, Addison Wesley Publishing Company, Workingham, 

England, 6th Edition; 07 August 2000. 
209 Lawrence, J. Dennis; Workshop on Developing Safe Software: Final Report, Fission Energy and 

Systems Safety Program, Lawrence Livermore National Laboratory; 30 November 1992. 
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C. ASPECTS OF SOFTWARE SAFETY 

Software Safety and its Safety Management Concept can be divided into six 

activities: 

• Hazard Identification 

• Software Safety Assessment 

• Safety Decision Making and Development 

• Implementation of Safety Controls 

• Supervision of Safety Changes 

• Verification 

This concept is derived from the Naval Safety Center’s research and process of 

Operational Risk Management.210  The process is based on the four Principles of ORM, 

namely: 

• Accept risk when benefits outweigh the cost.  Develop effective safety 

measures that balance the cost of safety against the benefit of hazard 

avoidance. 

• Accept no unnecessary risks.  Tolerate no system below an acceptable 

measure of safety. 

• Anticipate and manage risk by planning.  Investigate, anticipate, and 

mitigate safety hazards through the entire lifecycle of the system. 

• Make risk decisions at the right level.  Develop an accountable process 

to prevent hazardous events at all levels and stages of development. 

Hazard Identification is the process of identifying potentially hazardous elements 

and events in the system, flaws in development, protections, mitigations, and limitations.  

Hazard Identification is one the most important phase of Software Safety Assurance, as 

it forms the foundation for all subsequent events.  This process may be accomplished 
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using energy barrier trace analysis, checklists, taxonomies, and subject matter expertise to 

generate a list of system objects and process that contribute to safety. 

A Software Safety Assessment is the qualitative and quantitative analysis of the 

identified properties of development as they relate to safety.  The assessment is 

accomplished using applicable metrics that measure and assign worth to the system.  The 

assessment may rationalize the probability of an unsafe incident and the impact of such a 

hazardous event, or to the contrary may suggest a level of safety and benefit to such 

development. 

Safety Decision Making and Development is the process of determining the 

optimal process for development and its subsequent execution.  Such decisions are made 

taking into account the abilities of the development process, the equities of the 

assessment, and the goal of the development.  Christendom’s Lucifer Principle contends 

that there is a degree of "evil" in all things.  In that same vein, it is understood that there 

is a level of hazard in all software systems.  The dilemma is to determine the most 

efficient development plan that can translate decisions into process, within the capabilities 

of the developers.  The decision process determines the level of effort or threshold that is 

acceptable for development.  A Software Safety Program supports critical decision 

making at development milestone and transition points. 

The Implementation of Safety Controls is the act of using proven processes that 

ensure safety and reduce system hazards.  Such controls include management practices, 

error handlers, redundancies, safety–design requirements, and systems tests.  Controls 

correct and redirect the development process to ensure that safety is paramount through 

the entire lifecycle of the system. 

                                                                                                                                                 
210 Naval Safety Center; Risk Assessment – Risk Management Controls, Naval Message DTG 231200Z 

JUN 95 / MSGID / GENADMIN / COMNAVSAFECEN / 40-646 / JUN 
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Supervision of Safety Changes includes the re–assessment and re–evaluation of 

safety metrics to ensure compliance with development goals.  Supervision also includes 

the monitoring of software development, the re–identification of any new hazards and 

flaws that may have occurred due to development changes, and the communication and 

feedback of safety and hazards for peer review. 

A Software Safety Assurance process can readily be mapped to traditional Spiral 

Developments Models.  The Spiral Model, popularized by Barry Boehm, 211  is a 

progressive cyclic version of a stage-wise development model, which begins each cycle 

of the spiral by performing the next level of elaboration of the prospective system’s 

requirements.  Risk management within this stage-wise model contains many of the 

concepts and ideals required for Software Safety, the difference being the fundamental 

shift beyond project development to system hazard avoidance.  To relate to the Boehm 

Spiral Model, the Supervision of Safety Controls would occur in PHASE I of the Spiral, 

with Hazard Identification occurring in PHASE II, the actual Software Safety Assessment 

taking place in PHASE III, and the ultimate Software Decision Making and Development 

process in PHASE IV.”  Assessment and testing for System Safety only adds to the 

robustness and functionality of the original system requirements.  Safety Controls support 

system development by instituting a second layer of validation and verification to each 

process cycle.  Rather than a shift in focus, Software Safety is accomplished in series 

with existing development, resulting in a system that is developed safer, with greater 

control and understanding of the capabilities and limitations of its operation. 

                                                                                                                                                 
211 Boehm, Barry; A Spiral Model of Software Development and Enhancement, Computer, pg. 61-72; 

May 1998. 
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Figure 11 Safety in the Spiral Model 
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D. DEPICTING SAFETY 

A pictorial depiction is essential to presenting a visual relationship between the 

software functionality, failure, and hazard prevention of Software Safety.  System 

Development requires the decomposition of action into objective models that can be 

easily observed, traced, and correlated.  These models can be developed into visual 

presentations that illustrate the potential propagation of software failures through the 

system.  This illustration is then used to portray system vulnerabilities and areas where 

safety mitigation is capable of preventing a hazardous event.  Various software 

development models include the graphical depiction of the system for presenting an 

efficient and aesthetic way of viewing functionality including Fault Tree, Class Diagrams, 

Hypergraphs, PSDL (Prototype System Description Language), Fishbone, and Petri Nets.  

A Software Safety Graphic would be based on a form of the Fault Tree model with its 

ability to logically portray system flow and failure dependencies. 212   Examples of 

potential graphical representation solutions were given in Chapter II.E.2 of this 

dissertation, with a demonstrated solution in Chapter V, with specific concentration in 

Chapter V.E.1. 

E. SUMMARY 

At present, the state of the art of software development lacks a viable metric for 

quantifying the safety of a Software System.  Various metrics mentioned in Chapters II.E 

and IV.B of this dissertation are capable of predicting the rate of failure of a system 

without taking into consideration the consequences of the failure.  Not every failure may 

result in an unsafe event.  Correspondingly, there exists no model for effectively 

depicting software process flow and functionality as it applies to failure and Software 

Safety.  Currently, software metrics exists to determine the complexity, effort, and or size 

of a software system.  These metrics, while beneficial for their intended purpose, do not 

readily adapt to computing the propagation of failure or probability of a hazardous event.  

Susan Sherer agreed that, “…software can never be guaranteed to be 100% reliable.  

                                                                                                                                                 
212  See Chapter V.E.1 – Process Flow Mapping; for complementary clarification. 
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Software systems are discrete–state systems that do not have repetitive structures.  The 

mathematical functions that describe the behavior of software systems are not continuous, 

and traditional engineering mathematics does not help in their verification." 213   A 

Software Safety Metric is atypical to other metrics in that safety requires a measurement 

of probability and assumption of fact based on partial evidence, void of emotion.  The 

resulting measures of safety metrics include the balanced justification to risk human lives, 

limbs, or economy. 

While mean time to failure and other failure rate measures may be capable of 

determining the probability that a system may experience a failure, in Chapter V, this 

dissertation introduces a concept for refining that measure to take into account the 

probability that an event will execute, the probability that the event will fail during its 

execution, and finally the probability that the failure will result in a hazardous event.  The 

combination of the three measures, in conjunction with the severity of the consequence; 

ultimately merge to represent the level of safety of the system. 

Software Engineering is based on scientific and mathematical theory. 214  

Investigation has revealed scores of disasters that occurred when engineers ignored the 

most basic of principles of science and mathematics.  Indeed one definition of Software 

Engineering is, "the disciplined application of engineering, scientific, and mathematical 

principles, methods, and tools to the economical production of quality software."215  In 

keeping with the objective of Software Safety Assurance, the resulting metrics will 

comprise the disciplined application of engineering, science, and mathematics in an 

aesthetic and logical application to safety assessment. 

Software Safety and the corresponding metrics are not reactions to a crisis.  They 

serve to prevent crisis by the early recognition of possible hazards and controls that 

prevent such hazards.  They will provide the opportunity to make system improvements 

                                                                                                                                                 
213 Sherer, Susan; Software Failure Risk – Measures and Management; Plenum Press; 1992. 
214 Tichy, Walter F.; Habermann, Nico; Prechelt, Lutz; Summary of the Dagstuhl Workshop on Future 

Directions in Software Engineering (February 1992), ACM SIGSOFT Software Engineering Notes, 
vol. 18, num. 1, pg. 35-48; January 1993. 
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to mitigate hazards and strengthen functionality.  In cases where the additional effort is 

not cost effective to solving hazards, the developers and clients (if warranted to inform) 

have a greater understanding of the potential failures of the system for which they are 

about to deploy.  In such cases, a decision must be made of what is preferable: an 

imperfect system, no system at all, or a more expensive but safer system.  The cost of risk 

to human lives is a sensitive and controversial issue, and “cost effectiveness” does not 

have a universally accepted definition in such a context. 

                                                                                                                                                 
215 Humphrey, Watts S.; Managing the Software Process, Addison-Wesley; Massachusetts; 1989. 
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V. DEVELOPING THE MODEL216 

“Assessment of change, dynamics, and cause and effects are at the heart of thinking and 
explanation.” 

 
 – Attr. to Dr. Edward Tufte 

 

Simplistically, a safety assessment would query a system that has failed as to: 

1. What did it just do? 

2. Why did it do that? 

3. What will it do next? 

4. How did it reach this state? 

5. Is it possible to revert its process to a normal state? 

6. Why will it not reach that state? 

7. What caused it to reach that state? 

8. What can be done to ensure that it does not occur again? 

This assessment model attempts to answer some of these questions through a 

stage-wise process.  An assessment of Software Safety is based on computing the: 

1. The probability that a hazardous event will occur and 

2. The severity of that hazard – Consequence 

Through the combination of these two elements, it is then possible to derive a 

value of Safety for the system, mathematically defined as: 

                                                                                                                                                 
216  Luqi; Liang, Xainzhong; Brown, Michael L.; Williamson, Christopher L.; Formal Approach for 

Software Safety Analysis and Risk Assessment via an Instantiated Activity Model, Proceedings from 
21st International System Safety Conference, Ottawa, Ontario, Canada, September 2003 
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 S = Σ P(H) * C(H) 
 for all H 

 
Where  S = The safety of the Software System 

 P(H) = The probability that a Hazardous Event (H) will occur 
 C(H) = The Consequence Severity of a Hazardous Event (H) 

 

Equation 1 System Safety 

In the most ideal circumstances, the equation is the summation of two specific 

values to derive a specific result.  In a perfect world, the values of a system’s properties 

would be clearly defined and easily incorporated into a mathematical computation.  In 

reality, there are far too many variabilities in the dynamic nature of software development 

to derive specific values for each software property.  As a software system’s complexity, 

size, and uncertainty increase, the ability to place finite values on system properties 

decreases.  In such cases, it may become necessary to assign range values to cover 

specific states or conditions of the system.  This chapter outlines methods for deriving 

both precision and non-precision values for system properties  

The value of P(H) can range numerically between zero and one ( 0 ≤ P(H) ≤ 1 ), 

or be represented as a textual value rated within a series of numeric limits (see the 

example in Table 10).  The value of one depicts the probability that a hazardous event 

will occur constantly, while the value of zero represents the probability that a hazardous 

event will never occur.  Textual values and limits are further defined in this chapter.  The 

procedures for determining the value of P(H) are defined in this chapter.  It is the goal of 

the development to reduce the probability of a hazardous event ( P(H) ) to as small a 

value as possible. 

The value of C(H) can range numerically between zero and one ( 0 ≤ C(H) ≤ 1 ), 

or be represented as a textual value rated within a series of numeric limits (see the 

example in Table 7).  A C(H) value of zero represents a negligible severity consequence 

while a C(H) value of one represents a catastrophic severity consequence.  The 

procedures for determining the value of C(H) are defined later in this chapter.  It is the 
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goal of the development to reduce the consequence severity of a hazard ( C(H) ) to as 

small a value as possible. 

The value of Safety (S) of the Software System can be represented by a textual 

value/definition determined by the grid intersection of P(H) and C(H) values (see the 

example in Table 12) or as a numeric representation of safety.  The procedure for 

determining the value of S is defined in this chapter.  It is the goal of the development to 

drive the level of safety towards zero.  The greater the Safety Index, the more unsafe a 

system becomes. 

The safety of a system is based on the combined safety of each component and 

the ability for the system to control hazards as a whole.  In the most general terms, it is 

based on the probability that hazardous events will occur in combination with the severity 

of their consequence.  In the most detailed terms, it is an examination of each hazard, 

consequence, and probability of execution that is expressed in the final equation.  .  The 

interdependency that is frequently a part of complex systems can results in very complex 

probability equations. 

A. SAFETY REQUIREMENT FOUNDATION 

Traditionally, developers would build a system, test it, and then refine it through a 

series of improvements.  This method, while successful, would require a significant 

amount of unnecessary rework and testing that could have been avoided using proper 

design and forethought.  It is easier to design the software with safety in mind, planning 

for the potential for hazardous events, implementing controls and mitigation tools, and 

testing with the foresight to isolate environments and states that could lead to process 

failure.  Such prior planning is beneficial to the success of system development and 

replies on the use of proper requirement specifications to set the foundation for design 

and development. 

Requirements can be divided into four distinct levels based on their degree of 

specificity and application to system development.  The accepted nomenclature for 

requirements classification identifies Level 1 Requirements as the top most mission-level 
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requirements of the system.  They are written in very broad terms and rarely change over 

the course of development.  Level 2 Requirements are referred to as Allocated 

Requirements, derived from a decomposition of Level 1 Requirements.  They are written 

in greater detail than the previous requirement, introducing specifications necessary for 

project development.  Level 3 Requirements are Derived Requirements that can be traced 

back as a subsystem to support Level 2 Requirements.  There exists a bi-directional 

relationship from one Level 2 Requirement to one or many Level 3 Requirements.  Level 

4 Requirements are the Detailed Requirements used to code and design the actual system, 

based on the derived specifications from Level 3.  There exists also a bi-directional 

tracing between Level 3 and Level 4 requirements.  System tests are designed to verify 

the Level 4 Requirements while Acceptance Tests are used to verify Level 3 

Requirements.  Inspection and Observation is usually sufficient to certify Level 1 and 

Level 2 Requirements.217 

Lacking in the state of the art of requirement’s specification is an assignment 

relationship between safety elements and the requirement level concept.  Presently, there 

exists little formal direction towards the proper inclusion of safety elements in any part of 

the requirement specification document, other than recognizing the importance of their 

inclusion.  In the case of High Assurance Systems, it should be necessary to assign safety 

elements to specific levels of requirement definitions, thereby increasing commonality 

and conformity across diverse developers and user’s groups.  Through this dissertation, I 

introduce the following Safety to Requirement Level Assignments: 

• Level 1 Requirements – Top Level:  Hazard Introduction.  All Potentially 

Hazards Events that could occur during system operation are identified in the 

requirements.  This is to include hazardous events that could occur should the 

system function normally or fail to operate. 

                                                                                                                                                 
217  Roseberg, Linda H. Ph.D.; Hammer, Teodore F.; Huffman, Lenore L.; Goddard Space Flight Center; 

Requirements, Testing, and Metrics, Proceedings of the 16th Pacific Northwest Software Quality 
Conference, Utah; October 1998. 
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• Level 2 Requirements – Allocated Requirements:  Hazard Amplification.  

Hazardous Event definitions are amplified to include states of operation that 

could lead to the event, potential process malfunctions that could trigger the 

event, and consequences of the hazardous event.  Consequences, costs, and 

effort related to the Hazardous Event should be included to justify controls 

later in the requirement documentation. 

• Level 3 Requirements – Derived Requirements:  Mitigation and Control of 

the Hazard.  Based on the identified hazard and related process malfunction, 

mitigation and control elements and techniques should be identified to reduce 

the severity or probability for occurrence of the hazardous event.  Decisions 

should be based on known cost-benefit factors including effort required to 

control the event against the probability of occurrence of such an event.  

Operational bounds and limits can defined at this level. 

• Level 4 Requirements – Detailed Requirements:  Mitigation and Control 

Logic.  Based on identified Mitigation and Control elements and techniques, 

logic statements can be defined to isolate hazardous triggers and 

environmental conditions required to control system operations.  Operational 

bounds and limits can be specifically defined to include their effect on the 

system and the logic necessary to counter the impact on system operation, 

should they occur. 

Controlling the limits of the operating environment is crucial to developmental 

success.  That success can be dependent upon the ability of the requirement specifications 

to isolate the acceptable bounds of operation for the system’s environment.  Using proper 

logic statements, it is possible to bracket or filter most operating environments to fall 

within acceptable bounds.  Should the environment stray, logic statements could be 

devised and included in the requirement specifications to counter and correct the error. 

The writing of requirements still demands a degree of subject matter expertise in 

the field of specification authoring, software engineering, and the subject for which the 
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author is writing the requirement.  It is impractical to assume that an individual can write 

a viable safety related requirement specification document without proper education, 

foundation, and experience from previous efforts.  For this intent, the method introduced 

in this dissertation provides a foundation for specification authors to base future products 

upon.  Optimally, specification authors should integrate the Safety to Requirement Level 

Assignment concept into their development process as a template, making modifications 

and improvements necessary to meet the specific needs of the project, the developers, and 

the client. 

1. Requirement Safety Assessments 
A significant effort has been made to quantify and qualify requirements using 

automated analysis techniques.  Many of these efforts have concentrated on nine 

categories of quality indicators for requirement documentation and specification 

statements, including:218 

Independent Specification Based: 
• Imperatives 
• Continuances 
• Directives 
• Options 
• Weak Phrases 

 
Requirement Document Based: 

• Size 
• Specification Depth 
• Readability 
• Text Structure 

 
While each of these elements provide some measure of requirement document 

quality, they do not directly address the specific needs of the High Assurance System, 

and in some cases contradict the process.  To ensure that safety based requirements are 

properly evaluated, it is necessary to amplify the assessment process to reflect the 

                                                                                                                                                 
218  Wilson, William M.; Rodenberg, Linda H., Ph.D.; Hyatt, Lawrence E.; Automated Quality Analysis Of 

Natural Language Requirement Specifications, Goddard Space Flight Center, National Aeronautics 
and Space Administration, Greenbelt, Maryland. 
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introduction of the Safety to Requirement Level Assignments, presented earlier in this 

dissertation.  Based on techniques already established in the state of the art of Automated 

Requirement Quality Analysis, it is possible to evaluate the requirements in regards to 

safety as follows: 

a. Level 1 Requirements 
Completeness:  Level 1 Requirements shall be evaluated for their clarity 

and specification in the requirement statement to address safety related hazardous events 

in the system.  It is essential to identify all potentially hazardous events that could occur 

related to system operation.  Identified hazards should be clearly stated to remove 

ambiguity and confusion with like hazards not related to the system.   

Depth:  Level 1 Requirements shall be evaluated for sufficient linkage to 

subordinate Level 2 Requirements that amplify safety related hazardous events through 

system operation.  This linkage is critical to hazard resolution and adds to requirement 

specificity not normally expected in the top level requirement specification. 

b. Level 2 Requirements 
Completeness:  Level 2 Requirements shall be evaluated for their clarity 

and specificity in the amplification of safety related hazardous events in program 

functionality including operating states, conditions, and/or parameters that contribute to 

the hazardous event.  Specific hazard consequences, costs, and effort related to the 

hazardous event shall be addressed. 

Depth:  Level 2 Requirements shall be evaluated for their relevance to and 

satisfaction of safety related Level 1 Requirements, taking into consideration the 

necessity for Level 2 requirements to implement the safety intent defined in Level 1 

requirements.  Additionally, they shall be evaluated for sufficient linkage to subordinate 

Level 3 Requirements that identify and implement mitigating actions and controls of 

safety related hazardous events in system operation. 
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c. Level 3 Requirements 
Completeness:  Level 3 Requirements shall be evaluated for their clarity 

and specificity to identify and implement mitigating actions and controls of safety related 

hazardous events in system operation, taking into account identified states, conditions, 

and/or parameters contributing to the hazardous event.  Requirements shall address 

considerations for the cost-benefits of techniques, identifying potential alternatives 

should resources become limited.  Specific operational bounds and limits are identified at 

this level. 

Depth:  Level 3 Requirements shall be evaluated for their relevance to and 

satisfaction of safety related Level 2 Requirements, taking into consideration the 

necessity for Level 3 requirements to implement the safety intent of the Level 2 

requirements.  Additionally, they shall be evaluated for sufficient linkage to subordinate 

Level 4 Requirements that specifies specific logic necessary to design, implement, and 

monitor controls and mitigating elements of hazardous events. 

d. Level 4 Requirements 
Completeness:  Level 4 Requirements shall be evaluated for their clarity 

and specificity to address logic necessary to design and integrate mitigation and control 

elements to reduce the potential or severity of safety related hazardous events.  Logic 

statements shall be specific enough to be directly transferred into program functionality.  

Specific operational bounds and limits shall be defined and amplified to include their 

affect on the system. 

Depth:  Level 4 Requirements shall be evaluated for their relevance to and 

satisfaction of safety related Level 3 Requirements, taking into consideration the 

necessity for Level 4 requirements to implement the safety intent of the Level 3 

requirements. 
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2. Requirement Safety Assessment Outcome 
One of the primary steps in the development of High Assurance Systems is to 

define the safety criticality and criteria for the program.  In Dr. Schneidwind’s research, 

in which he discusses the process and benefits of implementing reliability, safety, 

requirements, and metrics to a High Assurance System, he makes a distinct point of 

defining the safety criteria in the system’s (Level 1) requirements.219  Numerous other 

prominent members of the state of the art of Software Engineering emphasize the 

importance of identifying hazards early in the development process and including them 

within the requirement’s specification. 220   It is generally accepted that it is at least 

fourteen times more costly to fix a problem discovered during testing then it is to fix it 

during the initial requirement’s phase of development.221  Using this motivation, the 

reliability modeling introduced by Dr. Schneidwind, and the requirement safety 

assessment method introduced in this dissertation, it is possible to gauge a factor of safety 

early in the development process.  From this early assessment, it is possible to determine 

if the initial requirement set is complete enough to justify project commencement. 

Properly written requirement specifications have a natural linkage from higher to 

lower level elements.  An assessment of software safety must validate that the linkage is 

intact and that hazardous events are satisfied across all levels of the requirement process.  

Additionally, it is imperative that specifications be reviewed to ensure that they do not 

impose contradictory or conflicting requirements against each other, essentially nulling 

out the benefit of one control or element of the hazard prevention chain.  Such an 

assessment can be accomplished using traditional automated assessment techniques or 

through the review of domain experts.  Much of what is accomplished in the 

requirement’s phase of development is based on judgment and experience.  It is difficult 

                                                                                                                                                 
219  Schneidewind, Norman F, Introduction to Software Reliability, Safety, Requirements, and Metrics 

with Space Shuttle Example, Naval Postgraduate School, Monterey, California; 27 July 2000. 
220  Richter, Horst P. PhD, Accreditation Of Software Systems In The Safety Environment, Richter 

Consultants; Scottsdale, Arizona, from the Proceedings of the 18th International System Safety 
Conference, Fort Worth, Texas; 11-16 September 2000. 

221  Hammer, Theodore; Huffman, Lenore; Wilson, William; Rosenberg, Linda PhD; Hyatt, Lawrence; 
Requirement Metrics for Risk Identification, Goddard Space Flight Center, National Aeronautics and 
Space Administration, Greenbelt, Maryland. 
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to quantify such experience other then to balance the successes of previous efforts with 

the education and talent gained through the maturation of the state of the art of software 

engineering. 

The assignment of Safety Elements to Requirement Levels would add little 

additional effort to the requirement development phase.  To its considerable benefit, it 

would add a standardized requirement format that could be early integrated into the state 

of the art of requirement development.  When properly implemented, the requirement’s 

specification document would drive the developer to consider hazard elements and 

mitigation controls early in the development process; saving time, resources, and effort 

through the remainder of the development (One of the key recommendations of the 

JSSSH). 222  Such a safety to requirement designation would compliment the existing 

requirement assessment methods; ensuring safety-based requirements are properly 

reflected in the preliminary design of the system. 

The traditional measure of completeness and quality (i.e., the complete and 

accurate implementation of requirements) must be modified to properly capture the true 

benefits of software safety within the requirement specifications.  Traditionally, an 

assessment might measure the ratio of requirements satisfied against the total number of 

requirements.  This plain ratio would overlook the significance or criticality of one or 

more requirements’ relationship to a hazardous event, including consideration of the 

mission criticality of requirements beyond their relationship to hazardous events.  All 

hazardous events must be evaluated independently as their outcomes hold unique 

consequences for the program.  It may be acceptable to have a low ratio of completed 

requirements to control an inconsequential hazard while certification may demand a 

higher ratio of completion to control a single catastrophic hazard.  Software safety is only 

concerned with the requirements that have been shown by their system-level analysis to 

have an associated hazard.  The metric desired for software safety is a safety 

requirements resolution metric demonstrating requirement satisfaction concentrating 

                                                                                                                                                 
222 Software System Safety Handbook, A Technical & Managerial Team Approach, Joint Software System 

Safety Committee, Joint Services System Safety Panel; December 1999. 
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alone on the safety-based elements. 223   Such criteria should be defined in the test 

specifications of the system’s requirement documentation.  

3. Safety Requirement Reuse 
Reuse benefits the state of the art of Software Engineering by incorporating 

elements that already meet the stringent design, development, and testing regimes 

necessary to ensure their success.  Once validated, high-confidence safety related 

requirements could be reused across similar projects of like-specifications.  On the 

surface level, the reuse of any proven safety related requirement specification would 

provide some assumption of completeness and increased safety of the delivered product, 

but would still require a level of scrutiny and examination of the component to ensure 

that it will continue to function properly in the new environment and complete system.  

As such, the level of scrutiny required is directly related to the potential consequence of 

the associated hazardous events.  The actual measure of safety would still require a 

stringent level of verification and validation to ensure that the specified safety 

requirements integrate effortlessly into the overall system.  Such a successful integration 

of reuse would reduce the level of effort to write new requirements, increase confidence 

by the use of proven specifications, and increase commonality across multiple 

specification documents.  At the lowest level, the use of a safety-based requirement 

template or “boilerplate” provides a fundamental starting point for specification authors 

to integrate into the final document. 

B. THE INSTANTIATED ACTIVITY MODEL224 

An Instantiated Activity Model represents the depiction of a function or process 

within a system during a specific state, based on the interaction of potential elements at a 

specific instance of operation.  While the potential environments may be near infinite, it 

is possible to model the limits of that environment to examine the interaction of the 

                                                                                                                                                 
223  McKinlay, Arch; Software System Safety, Integrating Into A Project, Proceedings from the 10th 

International System Safety Conference, Dallas, 1991. 
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elements of the IAM.  The Instantiated Activity Model introduced in this dissertation is 

designed to provide an assessment value at an instance of the system’s activity, based on 

state and environment.  Where software is highly reactive to its environment, it is 

imperative to devise a model that can measure a system for each possible state instance.   

The IAM, Instantiated Activity Model, is a typical IPO (Input–Process–Output) 

block schema dealing with a set of related activities such as Input, Process, Output, 

Failure, Malfunction, etc, as depicted in Figure 12.  As shown, it is possible to associate a 

potential failure with each activity of the system.  For instance, Input I1 with potential 

failure F1, through successive activities Process P1 and Output O1 would result in a 

failure leading to a Malfunction M1.  The IAM reveals the relationship between the 

essential IPO activities, the potential failures, and the hazardous situation or malfunction.   

 

Figure 12 Basic Instantiated Activity Model Example  

The IAM representation in this dissertation assumes a direct flow from Input to 

Output through a Process.  In complex IPO cases where loops are part of the process flow, 

then assessors must consider the simultaneous or selective natures of the loop input and 

output and their influence on the final process.  Should a failure occur in the loop process, 

the assessment must consider the ability for the loop failure to migrate back into the 

process flow and ultimately affect the occurrence of a hazardous event.  Loops must be 

evaluated for the number of repetitious events or iterations that they may execute during 

the  evaluation  period  as well as  the probability  that  the  execution  will   influence the  

                                                                                                                                                 
224  Luqi, Lynn Zhang, Documentation Driven Agile Development for Systems of Embedded Systems, 

Published in the Monterey Workshop on Software Engineering for Embedded Systems: from 
Requirement to Implementation, Chicago, Illinois, 24-26 September 2003. 
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process flow.  Unique to loop cases is the fact that the probability of failure will increase 

towards 100% as the process flow repetitively cycles for a given period as illustrated in 

Equation 2. 

 
Pperiod = 1 – (1 – Pevent)n  
 
Where: Pperiod is the Probability of an Event Occurrence over a defined period of 

multiple cycles 
Pevent is the Probability of an Event Occurrence over a single cycle 
n is the number of cycles that occur during a defined period 

 

Equation 2 Loop Probability Equation225 

The failure of the Patriot Missile System in the 1991 Operation Desert Storm 

conflict is a classic illustration of a catastrophic event related to a loop based failure.226    

In the Patriot case, the fire control system’s clock experienced a minuscule rounding error 

with each cycle.  Over an extended period of time, the clock error compound to a 

significant value, eventually reducing the integrity of the navigation solution and 

degrading the ability of the missile system to engage a target.  Each iteration of the 

clock’s computation was flawed due to a design weakness that assumed the system’s 

operational interval to be relatively short.  Testing, had it taken into account the factor of 

an extended operational period, would have revealed the compounded probability factor 

to the failure.  As the period cycle number ( n ) increases, then the effect of the event 

probability ( Pevent ) has a greater influence on the total probability for that period (Pperiod).  

The tragedy of the Patriot example is that the event could have been prevented and lives 

saved had (1) the developers taken into consideration the potential for a loop based 

failure over an extended period, or (2) the users employed the system for the limited 

purpose for which it was designed for. 

                                                                                                                                                 
225  Walpole, R.E. and Meyers, R.H., Probability and Statistics for Engineers and Scientists, Prentice 

Hall; 7th edition, Upper Saddle River, New Jersey; January 2002. 
226  See APPENDIX B.4 – 

PATRIOT MISSILE FAILS TO ENGAGE SCUD MISSILES IN DHAHRAN 



162 

Failures have the potential to lead to a range of actions from malfunctions to 

mishaps.  There can be many failures on inputs, processes, and outputs that do not lead to 

a mishap, although they may lead to another system malfunction.  It is more efficient to 

assign resources to assess failure modes that have the potential to lead to a mishap vice 

the blanket assessment of all failures.  As the assessment process becomes more refined, 

it will be possible to isolate and eliminate failure modes that have no effect on the final 

safety of the system. 

Additional process elements may be depicted using various symbols and graphics, 

according to the needs and preference of the analysts.  Invariants and post–conditions of 

each process and of the system can be defined by activity limits, assuming the system 

remains within operating parameters.  Limits can be used as one of the possible indicators 

for identifying potential failure.  Depending on the system under investigation and the 

consequence of a limit–type failure, an un–handled limit violation may result in a 

hazardous event.  Any graphic symbols used in the depiction should be referenced and 

defined in the graph body.  Examples of graphic symbols include, but are not limited to: 

IPO Activities, 
Modifiers, and 

Constraints 
Assessing Factors Composite IAM 

Input Failure Events Conjunctive 

Process Current Activity Selective 

Output Dependent Activity {|DA|} Simultaneous 

Limit Potential Malfunction  

Filter   
 
Figure 13 Essential Graphic Elements for IPO Block 

Input: The basic IAM IPO activity that transports data and 
system process flow into a Process activity for 
computation, manipulation, and/or execution.  The 
Input activity does not change the data value, serving 
only as a transport mechanism.   

In Fn

Pn An

On 

MnLn 
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Process: The basic IAM IPO activity that executes actions within 
the system based on inputted data, system states, and 
process function.  The Process activity has the ability to 
change data values, based on process functionality.  The 
resulting data values are transported from the Process 
via the Output activity. 

Output: The basic IAM IPO activity that transports data and 
system process flow out of a Process activity following 
computation, manipulation, and/or execution.  The 
Output activity does not change the data value, serving 
only as a transport mechanism. 

Limit: The basic IPO activity that bounds transported data 
values to within a specific window of limits, established 
in series with either an Input or Output activity.  Limit 
activities have the ability to modify data values based 
on the logic statement of the Limit.  No additional 
process action is taken other then to validate and bound 
the data values.   

Filter: The basic IPO activity that filters transported data 
values to within a specific window of limits, established 
in series with either an Input or Output activity.  The 
distinct difference between a Filter and a Limit is the 
ability for a Limit to change data values to fall within a 
predetermined set of values, while a Filter terminates or 
constrains the transportation of all values that do not 
meet the criteria established within said Filter. 

Failure Events: The event within the system process flow that contains 
a failure element.  One or more Failure Events can be 
contained within an IPO activity, while it may be 
possible for an IPO activity to contain no potential 
failure events. 

Current Activity: The global descriptor or placeholder of IPO activities.  

Dependent Activity: The series of activities for which the outcome of the 
primary activity is dependant upon to eventually result 
in a Malfunction event.   In the case of a safety 
assessment, dependency runs linearly through the 
process from the current activity under assessment 
leading up to the Malfunction event under investigation. 
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Potential Malfunction: The resulting Malfunction event within a system as a 
consequence of the system process flow through a 
Failure event. 

Conjunctive IAM: The composite IAM representative of two IPO blocks 
executing in series, one after the other, where as the 
previous block produces an Output activity that triggers 
the second block to be processed. 

Selective IAM: The composite IAM representation of two or more IPO 
blocks that exclusively trigger a common Process 
activity.  In the case of a Selective IAM, one, and only 
one of many inputs, triggers the subsequent Process 
activity. 

Simultaneous IAM: The composite IAM representation of two or more IPO 
blocks that simultaneously trigger the execution of a 
common Process activity.  In the case of a 
Simultaneous or Joint IAM, one to many Inputs 
activities triggers the subsequent Process activity.  

By the nature of a safety assessment, it is critical to measure the probability of an 

action and its corresponding failure through all of its applicable series activities, 

cascading towards a malfunction.  In such a case, the probability that one event will 

eventually result in a malfunction is dependant upon the actions of each of the elements 

downstream from the failing activity, up to the eventual malfunction.  Each these 

elements Dependant Activities have the ability to influence the propagation of the failure 

consequence through the system process flow, potentially increasing or decreasing the 

probability that a malfunction will occur. 

To better define the IAM and to provide a method for communicating its structure, 

it is imperative that elements be well defined and portrayed in examples.  An Activity can 

be composed of any number of elements of Inputs, Outputs, Limits (including Filters), 

Processes, and Failures.  The result of the failure can then result in a Malfunction at 

some Degree of Failure.  Taken together, all of the possible elements constitute a 

definable sample of the system, as denoted in Table 5: 
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I = I1  ∪ I2 … ∪ In  is all sets of Input activities in the system, where I1 = {i11, i12, i13, 

… , i1m} collects all of a specific Input activities for a given IPO block 

P = P1  ∪ P2 … ∪ Pn  is all sets of Process activities in the system, where P1 = {p11, p12, 
p13, … , p1m} collects all of a specific Process activities for a given IPO block 

O = O1  ∪ O2 … ∪ On  is all sets of Output activities in the system, where O1 = {o11, o12, 
o13, … , o1m} collects all of a specific Output activities for a given IPO block 

A = I  ∪ P  ∪ O  is the set of all activities in the systems 

L = L1  ∪ L2 … ∪ Ln  is all sets of Limit Constraints in the system, where L1 = {l11, l12, 
l13, … , l1m} collects all of a specific Limit Constraints on a specific system 

F = F1  ∪   F2 … ∪  Fn  is all sets of Failure Events in the system directly relating to 
specific IPO Activities on a specific system where F1 = {f11, f12, f13, … , f1m} 
collects all of a specific Failure events for a given activity element. 

E = L  ∪ A  ∪ F  is the set of Events in the system, where Failure, Activity, and Limits 
are all events in the system  

M = M1  ∪ M2 … ∪ Mn  is all sets of Malfunction states in the system.  Due to the 
interrelationships between Malfunctions, it is possible for the occurrence of one 
malfunction to overlap the occurrence of a second malfunction, or for one 
malfunction to preclude the occurrence of another. 

D = {intermittent, partial, complete, cataclysmic, et al}, the enumeration of all possible 
degrees of failures 

Table 5 IAM Safety System Objects 

 Because no standard arithmetic notation could be found to denote IPO flow of a 

software block through associated activities and failures, it becomes necessary to 

establish a set of formal notations to describe concepts using a rigorous math language, 

which is useful to quantitatively analyze safety and assess risk associated with the IAM.   

Such a mathematical notation makes it easier to develop proofs and algorithms that can 

be reused and reassessed, adding to the precision of the method under investigation.  As 

this dissertation adds the concept of the IAM to the IPO, together with the concept of 

mathematically computing the safety of a software system, it is essential to establish an 

arithmetic foundation for which to base the subsequent safety calculations upon. 
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(1). Pe (a) Execution Probability Operator that transforms a activities 
to probability, where a ∈ A 

(2). Pf (f, d) Failure Probability Operator that transforms f failures at 
degree d to probability, where f ∈ F, d ∈ D 

(3). f ^ a  Failure f of Activity a that is, f is associated with a where 
f ∈ F, a ∈ A; to denote the appearance of a specific 
Failure f when performing Activity a. 

(4). fi^ aj {[ak]}  M1 

 

M1 depends on (f1, 
f2,…fn, a1, a2, …an) 

Failure Fi associated with Activity aj, through Dependent 
Activity ak, it can result in a failure leading to a hazardous 
situation and malfunction M, where Fi ∈ F, ak ∈ A, Ml ∈
M 

Table 6 IAM Basic Notation Definitions 

The third notation in Table 6 refers to the Failure within a block, which is a 

simplistic block with a single failure, while the fourth notation refers to the Failure of a 

block with throughput to a Malfunction.  The addition of the through block represents the 

remainder of the process, including the malfunction.  There may be several failure modes 

within a computational block that may not lead to a malfunction.  Depending upon 

available resources, the assessment may need to concentrate on failure modes within the 

block that lead to hazardous events, disregarding benign failures. 

1. Formal Safety Assessment of the IAM 
The IAM example for a given IPO block deals with several aspects of failure 

combined to form the potential malfunction M1, as illustrated in Figure 14. 
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Figure 14 IAM Safety Analyses Notation 

This diagram shows three different possible causes for malfunction M1.  The first 

emphasis is on the Input I1 with the possible Failure F1.  The failure of input activity 

through dependent activities of process and output may result in a failure leading to a 

hazardous situation.  Similarly, the other two failure aspects are in the process P1 and 

output O1, associated with possible failure F2, F3, respectively.  Figure 14 illustrates the 

concept of multiple of activities combining to form the Malfunction M1.  Note that 

Example 1 is depicted as the left side of Figure 14.  Using Table 6, we can represent this 

as: 

(F1 ^ I1 {[P1, O1]}  M1) or (F2 ^ P1 {[O1]}  M1) or (F3 ^ O1  M1) 

Example 1 IAM Safety Analyses Mathematical Representation 

Further, all of these portions combined will result in a failure leading to 

Malfunction M1.  In this way, the potential malfunction for the IAM can be formulated as 

follows: 

M1 ≤ F1 ^ I1 {[P1, O1]} ∪ F2 ^ P1 {[O1]} ∪ F3 ^ O1 

Example 2 Malfunction Representation of the IAM Analyses 

The assessment of the elements of the IAM results in the final potential 

occurrence of malfunction M1.  It utilizes either a qualitative and quantitative approach 

employing principles of statistics and probability to determine the level of safety risk, 

I1 P1 O1 

F1 

F2 

F3 

M1

F1 

F2 

F3 

I1 

P1 

O1 

{P1, O1} M1 

{O1} M1      Denotes: 

M1 
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likelihood of hazardous events, and the economic cost–benefit of correcting the flaws 

through the lifecycle of a software system.  It also reveals that pre–identification of 

potential hazards before the start of development balances the development against effect 

and cost. 

2. Composite IAM 
Beginning with the IAM for a given IPO block, we consider the more complex 

scenarios of a composite IAM.  Fundamentally, there are three composing methods: 

Conjunctive, Selective, and Simultaneous composites, as shown in Figure 15.  Other IAM 

representations exist, but are more complex and are beyond the scope of the introduction 

intended in this dissertation.  The Conjunctive IAM represents two IPO blocks executing 

in series, one after the other.  The previous block produces output O1 that triggers the 

second block to be processed.  The Selective IAM represents three IOP blocks working 

together (the ◊ representing selection).  One of the two previous blocks produces output 

O1 or O2 that exclusively triggers the P3 processing.  The Simultaneous or Joint IAM 

represents three IOP blocks working together (the ○ representing simultaneity), and both 

previous blocks produce outputs O1 and O2 that jointly trigger the P3 block.   
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Figure 15 Composite IAM Representations 

For the conjunctive IAM, Example 2 can be applied to get the intermediate 

Malfunction Mx produced by the previous block.  The output O1 of the previous block 

will be treated as the input for the second block, as depicted in Figure 16 as: 

 

Figure 16 Conjunctive IAM split into Individual IAMs 
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Mx = F1^ I1 {[P1, O1]}∪ F2 ^ P1 {[O1]}∪ F3 ^ O1 

M1=Mx ^ I2 {[P2, O2]}∪ F5 ^ P2 {[O2]}∪ F6 ^ O2 

 

Example 3 Conjunctive IAM Mathematical Representation 

Therefore, the conjunctive IAM can be logically split into two individual IAMs.  

Once the factors of the individual IPO blocks are determined, such as input, process, and 

output and their associated failures, individual IAMs can be applied to analyze the safety, 

shown as Figure 16. 

For the selective IAM, shown as Figure 15.b, there are three IPO blocks (I1, P1, 

O1), (I2, P2, O2), ([O1 ◊ O2], P3, O3), each of which can be treated as an individual IAM.  

A new notation is introduced for the selective IAM: [O1 ◊ O2]; meaning that one and only 

one of two inputs trigger the execution of process P3.  Hereby the combined effect of [O1 

◊ O2] as inputs on the third IPO block, as M1^O1 ∩ M2^O2, will produce the safety risk.  

This can be interpreted as a potential lower boundary assessment for the safety 

assessment.  According to Example 2, the first two blocks may produce failures leading 

to malfunctions M1 and M2, respectively, while selective inputs may produce failure 

leading to M3. 

Quantitatively, applying the definitions of Table 6, the probability of failure can 

be formulated for the IAM.  For the Basic IAM shown in Figure 12, the probability of 

failure for various types (failure degree) is the sum of the probability of activity failure by 

probability of activity, illustrated as follows: 
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 A1 

 
As M1 depends on (F1, I1, P1, F2, O1, F3) then  
Pf (Mi, d) ≤ Σ (Pf (Fi, d) * Pe (Ai) * Pe (Ai {DAi})) 
 

Where: Pf (Fi, d) is Probability of Activity Failure, 
Pe (Ai) is Probability of Activity Execution, 
Pe (Ai {DAi}) is Probability of Series Dependant Activity Execution. 
 

Pf (M1, A1) ≤ (Pf (F1, I1) + Pf (F2, P1) + Pf (F3, O1)) * Pe (A1)  
 

Equation 3 IAM Summation 

For the purpose of this dissertation, the Instantiated Activity Model is illustrated 

in terms of a notional aircraft weapon arming and control software system (WACSS).  

The weapons arming system is required to control the arming of specific weapons for 

deployment, store weapon’s configurations and loadouts in a selectable menu, prevent 

inadvertent weapons release, prevent intentional release outside of permitted envelopes, 

and provide selectable fuse–arming delays to ensure sufficient separation of the weapon 

from the delivery unit.  The WACSS would function as a subsystem of a greater stores 

controller and aircraft avionics system.227, 228  The WACSS has a high potential for a 

hazardous event, as it controls explosive ordnance in a combat environment and 

interfaces with the avionics system of a high–performance military aircraft.  Both 

ordnance and aircraft have the potential to cause significant property damage as well as 

take the lives of persons within their destructive radius.  The destructive radius of a 

                                                                                                                                                 
227 DRAFT Joint CAF and USN Operational Requirements Document for Joint Direct Attack Munitions 

(JDAM) CAF 401-91-III-A, Office of the Undersecretary for Defense (Acquisition & Technology); 16 
December 1998. 

228 8th Fighter Wing Weapons Attack Guide, 8th Fighter Wing, U.S. Air Force; Kunsan Air Base, Korea; 
December 2000. 
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military weapon can range from a few dozen yards to over a half mile, depending on the 

specific weapon and method of employment. 

We present an approach capable of improving the software process by increasing 

software safety and reducing the probability of hazardous events.  This approach is 

compiled into a repetitive cycle of five phases, namely: 

1. Hazard Identification 

• System Task and Safety Requirement Analysis 

• Investigation and Inspection 

• Development of Consequence Severity Categories and Threshold 

2. Software Safety Assessment 

• Consequence Severity 

3. Safety Decision Making and Development 

• Process Flow Mapping 

• Initial Failure Depiction 

• Assessing Process 

• Change Determination through Threshold Establishment 

4. Implementation of Safety Controls 

• Acceptance, Avoidance, Reduction, Spreading, and Transference 

• Design and Development 

5. Supervision of Safety Changes 

• Implementation 

• Assessments of Validity / Effectiveness 

• Repeat 

C. INITIAL IDENTIFICATION OF THE HAZARD 

For each system, it must be determined whether hazards exist if the system were 

to experience any failure to meet project requirements.  Specific hazards that exist must 

be identified and their consequences determined.  Further analysis includes the review of 

potential hazards that may occur during the normal operation of the system within the 
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parameters of system development requirements, and the review of potential hazards not 

constrained by system requirements.  Such a review could be potentially overwhelming 

and devour precious resources if not well managed and constrained.  The evaluation can 

be derived using system requirements and historical precedents.  Hazards beyond the 

constraints of system requirements require a review of similar systems that may have 

hazards not considered in the development of the primary system.  A review of system 

functionality should include the inspection for potential hazards that could be induced 

due to failed or missing system requirements.  The initial identification could be an ad–

hoc inspection at the system concept level to determine possible consequences of system 

failure.  A more in–depth identification of system hazards can be accomplished with each 

progression in the development process, including revisions and supplements to the 

system requirements.  Hazards should be investigated for their occurrence over the three 

possible states of the system: 

• When the system fails to function properly – checking to see if an 

improper functionality of the system will result in a hazard, 

• When the system fails to function – checking to see if the system is 

incapable of controlling them, and  

• When the system functions properly – checking to see the existence of 

inherent hazards within the system. 

Using the Spiral Development Concept, the initial examination would be 

strengthened and refined through each consecutive iteration of development and 

inspection.  Subsequent cycles permit a more detailed examination of the development 

and potential consequences of failure. 

Step 1. Action 1. - System Task / Safety Requirement Analysis – Identify the 

primary safety requirements of the system through a review of concept level 

requirements, including system objects, properties, tasks, and events.  Identify system 

safety requirements as they pertain to system state and operating environment.  

Additional safety requirements may be identified using historical precedents and 

rationalization from similar systems.  System requirements should be inspected for 
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completeness and the inclusion of system safety logic controls and interlocks, where 

applicable.  Assessments should be made to evaluate size, time, effort, defects, and 

system complexity. 

Step 1. Action 2. - Hazard Identification – Perform a hazard identification of 

the software system based on concept level system requirements, system tasks, and 

historical precedents.  Identification includes identifying the Hazards, Consequences, 

and Malfunctions potentially occurring from the three states of hazard occurrence. 

Hazards should be identified by their consequence, malfunction, system state, and 

failure required to generate the consequence.  The Initial Hazard Identification is critical 

to system development as it establishes a foundation for the rest of the assessment.  A 

system may have multiple potential hazards, based on the system design and the objects it 

controls.  Likewise, each hazard may have multiple faults and triggers that set it in 

motion.  This cursory inspection permits early identification and prioritization of 

potential hazards before the system begins to firmly take shape, as shown in the example 

of APPENDIX E.1 of this dissertation.  Fault and trigger229 controls and interlocks will 

be discussed later in this chapter. 

During the Initial Hazard Identification Phase, faults, triggers, and specific 

failures may not be identified due to the infancy of the development process.  The only 

resources available at this stage for hazard inspection and identification may be the 

System Concept Documents, Initial System Requirement Specifications, and other 

preliminary documents.  As demonstrated in Table 20 and Table 22, malfunctions, 

hazards, and consequences may be grouped where similar in composition and content.  

Note, that while some categories may permit items to be consolidated, their root causes 

retain some value of independence.  This root independence contributes to a unique series 

of safety assessments and failure probabilities for each branch of the failure.  In some 

cases, multiple root failures may be set in motion by a single trigger.  Each failure event 

                                                                                                                                                 
229  Note:  See Chapter II.C of this Dissertation for discussion and definitions of faults, triggers, and 

failures as they apply to software system safety. 
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may have its own distinct probability of occurrence before joining with other events 

further down the process line. 

The inspection and object identification should consist of both forward and back–

flow process inspections to determine all potential safety–related objects.  The 

accomplishment of various “what–if” and “why” scenarios permits a review of the 

system from both ends of the process spectrum, from input to output.  The actual testing 

method used by the assessment team depends on the system being tested, the ability to 

extract data from the tests, and the applicability of the tests to overall system safety.  

Inspections should attempt to identify the location of a potential failure with respect to 

the system flow, the degree of a failure and its potential propagation to other failures 

(snowball), the times or instances for which the failure might occur, and the repetition 

rate of the failure.  Such properties make up what can be referred to as “failure 

exposure.”230 

Subsequent inspections will identify hazards and triggers to a greater detail, based 

on the level of development of the system and its relationship to potentially hazardous 

objects.  The goal of making the IAM measurement on probability of failure is to identify 

potential hazards before the start of development, thereby providing the opportunity to 

balance development against effect.  The degree of effort and detail in characterizing 

potential causes of a hazard should be commensurate with the severity of resulting 

consequences.  The methods used to identify hazards and their causes, and to categorize 

severity should be well documented. 

D. INITIAL SAFETY ASSESSMENT 

The Identification and Assessment phases rely on multiple sources of evidence 

and contextual material to determine a level of safety for the system.  Presenting these 

relationships, while preserving the flow and readability of the process depiction, is 

extremely difficult but essential to the success of the assessment.  The more in depth an 
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assessment is made of a system, the more accurate the evaluation will be.  As more depth 

is added to the assessment, the product can become three and four–dimensional.  The 

IAM provides a method for evaluating the system at one instance in state, but a system 

may have many states for which it must be evaluated.  To ensure that the assessment is 

inclusive of all potential states without adding confusion, the assessment must be 

managed and cross–referenced in a logical manner.  Appendix E demonstrates a potential 

method for logically depicting an assessment of a complex system across multiple states.  

The actual format of the software assessment process remains the prerogative of the 

development and assessment team, so long as the format provides information in an easy 

to discern fashion and does not detract from the safety of the system as a whole. 

A Safety Assessment requires the balanced measurement of the probability of 

hazard occurrence ( P(H) ), and the severity of the hazard consequence ( C(H) ).  The 

combination of these two values resolves the safety of the software system ( S ).  It is 

possible that the probability of Hazard Occurrence cannot be accurately computed early 

in the development process due to a lack of system maturity.  Some value of probability 

can be assumed based on similarities to existing/historic systems, taking into account 

lessons learned, improvements, and technological advances in related systems.  

Probabilities may be estimated across a field or ranges of values, depending on the 

fluidity and understanding of the system. 

There exists a myriad of metrics and procedures capable of determining a degree 

of probability of the occurrence of a specific event in a software system.231, 232, 233  The 

assessment of hazard probability should be based on the review of all pertinent 

information, as well as a subjective review of the system from the scrutiny of multiple 

                                                                                                                                                 
230 Operational Risk Management (ORM) Handbook, Subset to AF Instruction 91-213, 91-214, and 91-

215 Operational Risk Management, Air Force Civil Engineers, U. S. Air Force; 1991. 
231  See examples in Chapter II.E.2 – Traditional Methods to Determine Software Safety 
232  Pai, Ganesh J.; Donohue, Susan K.; and Dugan, Joanne Bechta; Estimating Software Reliability From 

Process And Product Evidence; Department of Electrical and Computer Engineering; and Systems and 
Information Engineering, The University of Virginia, Charlottesville, Virginia. 

233  Fischer, Rolf; Kirchgäßner, Bertold; Reliability Analysis and Optimization in PERMAS; NAFEMS 
Seminar, Use of Stochastics in FEM Analysis, INTES GmbH, Stuttgart, Germany, 08 May 2003. 



177 

developers.  The degree of confidence in the assessment will increase in later stages of 

development as the system becomes more stable and the change decreases. 

The severity of a specific consequence is related to the hazard density of the 

process, the relationship to other hazards (as one hazard may defeat or promote another), 

and the repeatability of such events leading to the hazard.  Hazard density refers to the 

abundance of hazards that could occur over a set of system tasks. 

Consequence Severity must first be assessed for its negative value or harm to the 

system, customer, or society.  Additional consideration should be made of the economic 

or intrinsic costs of the hazard when determining Consequence Severity.  The assessment 

of severity can be based against a predefined categorized table.  Each category must be 

distinct from the previous to ensure no potential for overlap or confusion.234  The table 

should range from the smallest discernable degree of Severity to the greatest degree 

possible.  Various risk methodologies use a common set of Consequence Categories, as 

exemplified in Table 7.235, 236  Additional levels and sub–levels may be introduced if the 

system assessment requires such granularity. 

Definitions of specific categories are negotiable based on the intent of the system, 

resulting threat / consequence to the general public, threat to the system, and the 

resources of the operator / developer to compensate for the resulting action.  Level 

definitions may be refined to fit the specific system.  Definitions in Table 7 cover a 

                                                                                                                                                 
234  Personal Comment:  Establishing consequence severity threshold has traditionally been a difficult and 

politically charged task.  In most cases, the levels are refined based on historical events and present 
observations of similar systems and hazards.  In Naval aviation, evaluators developed two scales, one 
to measure the monetary damage of an event and a second scale to measure the personnel injury from 
an event.  These scales omit an important measure of mission criticality, in that it determines how 
your mission making ability is influenced by a hazardous event occurrence.  As a system matures and 
a safety assessment team becomes more experienced with dealing with specific hazards and 
consequences, they will realize a comfort level applicable to each scale of danger and the threshold for 
which the assessor and client will accept.  Yes, this is a gray measure and will result in hours of debate 
between client, management, and developers.  The scales used in Naval Aviation have matured over 
years of trial and error, and have shifted by promptings from economic and political voices. 

235 Operational Risk Management (ORM) Handbook, Subset to AF Instruction 91-213, 91-214, and 91-
215 Operational Risk Management, Air Force Civil Engineers, U. S. Air Force; 1991. 

236 MOD 00-56, The Procurement of Safety Critical Software in Defence Equipment Part 2: 
Requirements, Ministry of Defence; Glasgow, United Kingdom; 1989. 
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system capable of physical injury and significant economical loss.  Consequence Severity 

definitions may be significantly different for unique systems that may not result in 

physical injury or monetary loss, but may result in damage to the system or the 

environment.  It may be necessary to further characterize terms used in severity 

definitions to eliminate confusion and provide distinct boundaries between severity levels.  

For example, in Table 7, definitions or examples may be provided for major, minor, and 

less then minor mission degradations, injuries, or system damages.  Severity level ordinal 

values are introduced for brevity reference later in the assessment process. 

For determination of a Safety Index, the severity definition is matched with a 

corresponding numeric value, ranging from 0 to 1.0.  The severity value can then be used 

to calculate the final value of safety. 

    

  LEVEL DEFINITION 

1.0 I – CATASTROPHIC Complete mission failure, loss of life, or loss 
of the system. 

0.6 II – CRITICAL Major mission degradation, severe injury or 
occupational illness, or major system damage 

0.3 III – MARGINAL / MODERATE Minor mission degradation, minor injury or 
occupational illness, or minor system damage SE

V
E

R
IT

Y
 

0.0 IV – NEGLIGIBLE Less then minor mission degradation, injury, 
illness, or minor system damage. 

 

Table 7 Basic Consequence Severity Categories 

Step 2. Action 1. - Development of Consequence Severity Categories – Develop 

a prioritized list of Consequence Severity Categories, ranging from the most severe to 

the least severe possible consequence.  Severity categories should be well defined to 

eliminate confusion and provide distinct boundaries between. 

Step 2. Action 2. - Initial Hazard Assessment – Perform an initial hazard 

assessment of the system by classifying hazards according to Consequence Severity, 

based on an agreed table of Consequence Severity Categories. 
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One military software system may consider a Catastrophic Consequence to be the 

death of three or more service members in a single incident, while a Critical 

Consequence might be the death of one or two service members.  A commercial 

refrigeration software control system might consider a Critical Consequence to be the 

complete spoilage of a refrigerator’s contents, while a Catastrophic Consequence could 

be the release of Freon refrigerant into the atmosphere and subsequent EPA fine.  Naval 

Aviation uses a classification matrix based on the amount of monetary damage, personnel 

injury, disability, and death, as depicted in Table 8.   

   

LEVEL DEFINITION 

A 
Total damage cost if $1,000,000 or more and/or 
aircraft destroyed and/or fatal injury and/or 
permanent disability 

B 
Total damage cost is $200,000 but less then 
$1,000,000 and/or permanent partial disability 
and/or hospitalization of three or more personnel. 

SE
V

ER
IT

Y
 

C Total damage cost is $20,000 but less then $200,000 
and/or five lost workdays. 

 

Table 8 OPNAV Mishap Classification Matrix237 

For the purpose of the WACSS example, Table 21 is included to demonstrate a 

probable Consequence Severity depiction.  Optimally, each consequence should be 

evaluated, at a minimum, on: 

• The importance / critically of the operation of the system to mission 

accomplishment, 

• The consequence’s effect on the continued operation of the system, 

• The ability of the system to recover from the consequence, 

                                                                                                                                                 
237 OPNAV INSTRUCTION 3750.6R, Naval Aviation Safety Program, Chief of Naval Operations, 

Department of the Navy; 01 March 2001. 
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• The ability of the owner / operator of the system to recover from the 

consequence, 

• The ability of the owner / operator to afford the required compensation for 

the consequence (monetary damages, legal restitution, civil fines), 

• The effect of the consequence on the general public, military, and 

governmental workers (each party graded separately), 

• The resulting long term trust in the system, and 

• The political / emotional effects of the consequence. 

The above bulletized list serves as a generic sample of consequence assessments.  

A more specific list may be tailored to the actual product under development, taking into 

consideration the actual consequences that the system may experience.  There is no 

specific ordering to the assessment, except that the review should encompass all potential 

aspects of consequences and applicable severity categorizations.  For purposes of 

developing a system Consequence Severity table, as in Table 7: 

1. Determine the types of consequences that apply to the specific system, 

using the above list or other applicable consequences relevant to the 

system under development. 

2. Determine applicable break points that could be readably defined to 

segregate consequence severities for each type of consequence. 

3. Determine applicable severity levels that apply to segregated consequence 

severities. 

4. Match consequence severities levels to segregated consequences. 

After constructing the system Consequence Severity table, it may be evident that 

some definitions could include elements that are tangible as well as intangible, depending 

on the elements of the evaluation. 

During the assessment and development process, client and developers may 

realize that routine operation of the system may place operators or public at risk.  Such 
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risks must be evaluated in the same manner as other hazardous events and be an integral 

part of the final determination of the system’s overall safety.  The ultimate decision to 

continue production and employment of the system must judge if the risk and potential 

harm outweighs the benefit received from the operation of the system. 

Subsequent assessments will identify additional hazard exposures, frequency, and 

probability based on the level of development and logic / functionality of the software 

system.  One goal of the initial hazard assessment is to determine acceptable levels of 

failure based on hazard consequence severities.  Potential results of the initial hazard 

assessment may include: 

• A review of the budget assessed for the development, including additional 

budgetary requirements necessary to overcome, prevent, or mitigate 

identified consequences, 

• A review of the proposed development schedule for the refined effort 

required to manage identified consequences, 

• A review of system development requirements for applicability, taking 

into consideration newly and categorized consequences, 

• A review of the capabilities of assigned developers and their abilities to 

overcome identified consequences using current methods, and  

• The ultimate cost–benefit decision to continue or discontinue the 

development process. 

These assessments will be used to direct the effort of the development process, 

optimally reducing the overall hazard potential through proper design.  The methods used 

to assess consequences should be agreed upon before identification and should be well 

documented. 
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E. SOFTWARE DEVELOPMENT AND DECISION MAKING 

Once hazards have been initially identified and assessed, it is then possible to 

develop the system using goal-oriented methods.  The goal of the development should be 

to build a software system that produces as few hazards as possible, placing a greater 

emphasis on hazards with the most significant consequences. 

The IAM, Instantiated Activity Model, is a typical IPO (Input–Process–Output) 

block schema dealing with a set of related activities such as Input, Process, Output, 

Failure, Malfunction, etc, as depicted in Figure 12.  A shown, it is possible to associate a 

potential failure with each activity of the system.  For instance, Input I1 with potential 

failure F1, through successive activities Process P1 and Output O1 would result in a 

failure leading to a Malfunction M1.  The IAM reveals the relationship between the 

essential IPO activities, the potential failures, and the hazardous situation or malfunction. 

1. Process Flow Mapping 
Software Engineering has a virtual cornucopia of graphic models to depict 

software logic process flow.  Many of those models were previously reviewed in Chapter 

II.E.  Additional models include the Stimulus–Response Structure and Spec Syntax.238  

Spec language is designed to define the environmental model of complex programs using 

logic based notation and pictorial representations.  Regardless of the model selected, it 

must be capable of: 

• Depicting the process flow of independent requirements 

• Depicting the interdependencies of logic decisions 

• Depicting the potential conflicts and recovery mechanisms of critical 

components 

• Depicting the relationship and flow of function failure to hazard execution 

                                                                                                                                                 
238 Berzins, Valdis Andris; Luqi; Software Engineering with Abstractions, Addison-Wesley Publishing; 

1991. 
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After an investigation of available methods and models, it is determined that a 

pseudo form of Fault Tree Analysis239 best suits the requirements of a Software Safety 

Process Flow, using additional graph elements to depict both the fan–out and fan–in 

characteristics of the process flow.  Such a process graph analysis permits the depiction 

of decision–making and process structure where, like a tree, the process can split and 

branch from the trunk to cover all possible perturbations of the process, but include the 

additional ability for processes to merge back together or even flow backwards as 

feedback to preceding processes.  Ideally, a software system would behave cyclically 

with a constant set of controlled inputs.  Realistically, software system can have a near 

infinite set of possible inputs, depending on the declaration of the input variable.  Process 

graph models are well suited to portraying such variable input to output systems. 

Step 3. Action 1. - Choose a Process Depiction Model – Determine the optimal 

process depiction model to perform a safety assessment of the system.  This process 

model should be capable of depicting requirement process flow, logic decisions, 

conflict and recovery, and the isolation of function failure to hazard execution. 

The process flow mapping determines the initial set of blocks required to populate 

the Instantiated Activity Model using the identified system requirements.  Once activity 

sets are identified, we populate sets with applicable high–level activity items and 

properties.  Items and properties include, but are not limited to, process inputs, outputs, 

and connections.  In accordance with the IAM and associated activities, we map the 

system process to include all high–level system processes, inputs, outputs, and limits. 

                                                                                                                                                 
239 Hiller, Martin; Jhumka, Arshad; Suri Neeraj; An Approach to Analyzing the Propagation of Data 

Errors in Software, (FTCS-31 and DCCA-9), The International Conference on Dependable Systems 
and Networks; 2001. 
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Ideally, each system would consist of a finite set of IPO blocks and elements.  

The terms Process, Event, Function, and Module can be assumed synonymous for 

depicting IPO block flow.  In such three–object systems of inputs, processes, and outputs, 

errors can be introduced in the inputs and process objects, resulting in failed output 

objects.  Basic IAM assumes that one input contributes to one or more errors.  

Realistically, the combination of one or more inputs may be required to generate a single 

error depending on the input value, limits of the system, and reliance or relation of one 

input to the next.  In complex systems, a single process input becomes highly reliant on 

secondary inputs to meet the logic requirements of the system.  Despite one input being 

out of bounds, its effect and action may be compensated for by a series of other inputs. 

Once an instantiated activity model has been selected, the elements of the system 

can be identified and organized for later display in said model.  The process graph model 

selected for this development includes the following elements: 

• Independent IPO Block 

• Failure Event 

• Current Activity 

• Dependability Activity 

Step 3. Action 2. - Identify Objects Required to Populate the Process Model – 

Determine the initial set of objects required to populate the process model identified in 

Step 3.1., using system requirements identified in Step 1.1.  Once object sets are 

identified, populate sets with applicable high–level object items and properties.  Items 

and properties include, but are not limited to, process inputs, outputs, and connections.  

(See example Table 23 thru Table 26) 

Object identification is accomplished by the ordinal identification of all major 

processes, functions, and properties of the software system in the following fashion: 
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(1) Identify Software System Processes and Title (Table 23) 

(2) Designate Process Object Numbers 

(3) Detail Process Descriptions 

(4) Identify Software System Inputs to each Process (Table 24) 

(5) Designate Input Object Numbers 

(6) Detail Input Descriptions 

(7) Assign Relations from Inputs to Processes 

(8) Identify Software System Outputs to each Process (Table 25) 

(9) Designate Output Object Numbers 

(10) Detail Output Descriptions 

(11) Assign Relations from Outputs to Processes and Inputs 

(12) Identify Software System Limits to each Input and Output (Table 26) 

(13) Designate Limit Object Numbers 

(14) Detail Limit Descriptions 

(15) Assign Relations from Limits to Processes, Inputs, and Outputs 

(16) Depict / Map the System of Processes, Inputs, Outputs, Limits, and their 

Relations (Figure 21) 

Steps 1 – 11 are similar to identifying the elements of a classic data flow diagram, 

with the additional element of process flow.  Limits are defined as the anticipated bounds 

for which the system is expected to operate within, as per the development requirements.  

It could be expected that operation outside of those bounds might result in a failure in the 

system’s operation.  The term “limits” does not infer that actual objects, limits, controls, 

or interlocks exist that limit the inputs or outputs of the system to specific bounds, only 

that the system should operate within those bounds.  It is possible that rejected inputs 

outside of acceptable limits will eliminate a safety–critical failure mode associated with 

the software process.  The identification of such limits should be included in system 

development for the construction of applicable objects, limits, controls, and/or interlocks.  

The identification of limits is not restricted to one process or data flow, but can relate to 

multiple lines depending on the flow of the system. 
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Invariants and post–conditions of each process and of the system can be defined 

by object limits, assuming the system remains within operating parameters.  Limits can 

be used as one of the possible indicators for identifying potential failure.  Depending on 

the system under investigation and the consequence of a limit–type failure, that un–

handled limit violation may result in a safety based hazardous event. 

Step 3. Action 3. - Pictorially Map the System Process – In accordance with the 

process model identified in Step 3.1., and process objects identified in Step 3.2., map 

the system process, to include all high–level system processes, inputs, outputs, and 

limits.  (See example Figure 21) 

2. Initial Failure to Process Identification 
The system process flow map relates system objects to potential failures and 

system operating errors.  Through the use of a process graph, it becomes possible to 

identify the safety weaknesses within the system, matched with system processes, inputs, 

outputs, and limits following the flow of system operation.  Such a depiction permits the 

observation of hypothetical process failure flow once a flaw is triggered.  While 

malfunctions, hazards, consequences, and severity are identified early in the assessment 

process, a further assessment and assignment of failures to malfunctions and process 

objects completes the cycle of system failure identification. 

Hypothetical failures can be identified early in the analysis and development 

process by reviewing the process flow graph, identifying the process line affected by 

specific system operations, the particular points at which a process line may start, where 

the process line may end, and which objects / relationships are required for performance 

of the particular process line.  A process line can be defined as a microelement of the 

entire process graph with its own isolated branches and roots.  A process line can include 

specific inputs, outputs, and processes that are isolated for a particular event and action, 

as depicted in Figure 24 thru Figure 28 (Pages 350 thru 374).  Such branches and roots 

are observed in the greater process graph. 
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While a system may be plagued with scores of potential failures, for the purpose 

of a safety analysis, it is only essential to concentrate efforts on those failures that 

eventually relate to system hazards.  Other failures, or even flaws, may result in less then 

optimal performance of the system, but do necessarily contribute to safety–related 

hazards.  Their identification and analysis are accomplished in other forms of software 

development testing procedures not covered in this dissertation. 

Step 4. Action 1. - Identify and Match corresponding Failures to Malfunctions.  

– In accordance with the malfunctions identified in Step 1.2., and process objects 

outlined in Step 3.2., identify the potential system failures that could eventually result 

in identified safety–related malfunctions.  If identified failures relate to malfunctions 

not previously identified, return, and repeat the system assessment from Step 1, Action 

2.  Identified failures are then matched to specific process objects. 

The identification of system failures and malfunctions should be composed in a 

table similar to that of the Initial Safety Assessment Table Example of Table 20 and 

further decomposed in Table 22 and Table 27.  Failures, and their respective probabilities 

of execution, may be derived from research, analysis, and evaluation of historical data 

from similar systems.  Once hypothetical failures have been identified and related to 

system objects, they may then be injected into the system process map as depicted in 

Figure 22.  Failures can be identified by analyzing the malfunctions to determine which 

process objects are susceptible to failure for a given malfunction.  One failure may 

propagate through the system as it follows the process flow.  Such similar failures should 

be grouped and sub–noted for easy identification in the process map. 

While a malfunction may answer the question of “What negative action might the 

system take if it was not to behave properly?”, a failure answers the cause and effect 

question of “Which process and how must that process fail, to cause the system to take 

such a negative action?”  The initial evaluation is based completely on assumption and 

examination of the hypothetical system and not on actual system’s operation, assuming a 

worst–case scenario of system functionality. 
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Step 4. Action 2. - Add Identified Failures to the System Process Map – Using 

the process map completed in Step 3.3., and failures identified in Step 4.1., add 

identified failures to their corresponding locations on the process map using agreed 

process graph symbology. 

Failure to Process Identification assumes that an element of the system will fail 

and result in a malfunction.  The identification relies on the basic premise that the 

development is imperfect and will include flaws.  Once safety critical functions are 

identified, additional emphasis can be placed on their development to reduce the 

probability of errors in the design and development.  The identification of specific 

triggers and flaws is reserved for further investigation. 

3. Assessing the System Process 
To this point in the Software Safety Process, the analysis and investigation of the 

system has resulted in a series of products that both textually and graphically outline the 

flow and hypothetical failure possibilities of the system.  The Safety Assessment will 

complete the initial investigation of the system by providing a numeric and textual result 

of the investigation, as it pertains to the system’s safety and hazard avoidance.  Once the 

events of the system process have been mapped as they pertain to safety, it is possible to 

determine the probability that a system event will occur, as well as the probability that 

that event will fail to occur properly.  Consideration must be taken to the conditions 

mentioned in Chapter IV.B, namely the measured evaluation of specific hazards, degrees 

of hazards, protections and redundancies, stability, cost, restoration, and repair. 

Probability is the basic study of the relative likelihood that a particular event will 

occur.240  In the analysis of the software system, an assessment of Software Safety can 

only be made after determining the probability of execution of an event and if that event 

will function properly.  Previous steps in the investigation have identified the potential 

hazardous outcome of such a failed event.  In a safety assessment, each hazardous event 

                                                                                                                                                 
240 Lindeburg, Michael R., P.E.; Engineer in Training Reference Manual 7th Edition, Professional 

Publications, Inc; Belmont, California; 1990. 
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has an independent probability of occurrence.  The result of these calculations are use to 

make the final assessment and assignment of the Safety Index.  For this investigation and 

assessment, this method will utilize principles in Joint, Complementary, and Conditional 

Probability, as well as principles in Series and Parallel System Reliability. 

Assessing system process deals with such aspects as joint probability, 

complementary probability, conditional probability, failure severity, and so forth.  Joint 

Probability specifies the probability of a combination of events.  An event can be defined 

as the occurrence of objects (inputs, outputs, limits, processes, …) within the software 

system.  The population for the assessment consists of all events that occur in the system 

that could potentially result in a hazardous event.  Assuming that each failure could 

potentially lead to a hazardous event and that each failure is matched to a specific object, 

then it could be derived that the series of objects that contain a failure make up the 

population for the assessment. 

Through the application of Complementary Probability, due to the size and 

complexity of some software systems, it may be more efficient to determine the 

probability that an event does not occur than to determine when it does occur.  Given that 

P is the probability that an event will occur, 1 – P represents the probability that an event 

will not occur, the complement equals one minus the probability of occurrence. 

Conditional Probability can be defined as the probability that one event will occur, 

given that another event would also occur.  Such reliance permits the evaluation of one 

series to execute (Pe), as well as the evaluation of that series to fail to function properly 

(Pf), each series containing its own probability for occurrence.  In a complete system, it 

cannot be assumed that all processes will occur continuously, nor can it be assumed that 

all events will occur flawlessly.  Both probabilities must be evaluated, as Pf cannot occur 

without the occurrence of Pe. 
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a. Failure Severity 
As reviewed previously in Chapter II.D, it was noted that failures have the 

probability of occurring, resulting in varying degrees of consequence severity.  One 

object failure might occur undetected by the system as a whole, but the fact remains that 

a failure did occur; while another failure might propagate uncontrollably through the 

system, rendering the system incapable of further operation.  An assessment of system 

safety must review the probability of object failure at varying degrees to determine the 

ultimate value of system safety. 

Failures must be evaluated for their severity, probability of occurrence, 

and potential of that occurrence generating a malfunction.  These three variables combine 

to determine the overall probability of the system failure.  Table 9 lists probable Object 

Failure Severities ranging from least to greatest severity, as well as definitions of 

probable failure types.  Additional types and definitions can be added at the prerogative 

of developers as well as those conducting the analysis.  It should be noted that some 

failures may be so benign as to permit the system to continue operating; while a separate 

failure may cause the system to cease functioning and resulting in a hazardous event.  As 

it is not necessary to conduct an analysis on object failures that do not result in a system 

malfunction or hazardous event, it is not necessary to take those objects into 

consideration.  While, in many cases, failure severity may not directly contribute to the 

level of the hazard, it does serve as a characterization of system’s ability to operate and 

its inability to limit program functionality and protection, and the potential to lead to 

additional hazards. 
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Failure Type Definition 

Invalid Failure 
Disregarded 

Intentional design or secondary defect in parallel system, not resulting 
in a general system failure 

Minor Flaw 
Disregarded Flaw that does not cause a system failure or result in a malfunction 

Latent Failure 
Disregarded 

Failure that remains hidden in the background of the system, not 
resulting in a malfunction 

Local Failure 
Disregarded Failure local to an object, not contributing to a general system failure 

Benign Failure 
Disregarded 

Failure that propagates to a system failure with slight or insignificant 
consequences 

Intermittent Failure Failure that persists for a limited duration, followed by a system 
recovery, potentially, but not always resulting in a system malfunction 

Partial Failure Failure that results in the system ability to accomplish some, but not all 
requirements, potentially resulting in a malfunction 

Complete Failure Failure that results in the system’s inability to perform any functions, 
resulting in a malfunction 

Cataclysmic Failure Sudden failure that results in a complete inability to perform any 
functions, resulting in a malfunction 

 

Table 9 Failure Severity 
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Concretely, the assessment of the failure for various types can be 

represented as follows: 

 
 Pf (M1, intermittent) ≤  Pf (F1, intermittent)*Pe (I1)*Pe (I1 {[P1, O1]}) + 
  Pf (F2, intermittent)*Pe (P1)*Pe (P1 {[O1]}) + 
  Pf (F3, intermittent)*Pe (O1) 
 
 Pf (M1, partial) ≤  Pf (F1, partial)*Pe (I1)*Pe (I1 {[P1, O1]}) + 
  Pf (F2, partial)*Pe (P1)*Pe (P1 {[O1]}) + 
  Pf (F3, partial)*Pe (O1) 
 
 Pf (M1, complete) ≤  Pf (F1, complete)*Pe (I1)*Pe (I1 {[P1, O1]}) + 
  Pf (F2, complete)*Pe (P1)*Pe (P1 {[O1]}) + 
  Pf (F3, complete)*Pe (O1) 
 
 Pf (M1, cataclysmic) ≤  Pf (F1, cataclysmic)*Pe (I1)*Pe (I1 {[P1, O1]}) + 
  Pf (F2, cataclysmic)*Pe (P1)*Pe (P1 {[O1]}) + 
  Pf (F3, cataclysmic)*Pe (O1) 
 

In complex systems, it may be necessary to combine equations to 

represent composite failures with varying degrees of failure types; as if the system were 

to experience an intermittent failure on the input and a partial failure on the process.  

Step 5. Action 1. - Development of Failure Severity Categories – Develop 

a prioritized list of Object Failure Severity Categories with applicable definitions.  

Using Failure Modes, Effects, and Criticality Analysis (FMECA) 241  techniques, 

severities shall define the types of failures that a specific object could potentially 

experience, ranging from the benign to the catastrophic, and the potential effect of that 

failure on the system as a whole.  As the assessment is designed to evaluate system 

safety, it is possible to disregard object failure types that do not relate or result in 

hazardous events. 

                                                                                                                                                 
241  NASA/SP—2000–6110, Failure Modes and Effects Analysis (FMEA), A Bibliography, National 

Aeronautics and Space Administration; July 2000. 
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b. Application of Assessment 
While the mathematical principles of a system assessment is 

straightforward and rooted in accepted engineering statistical practices, the initial 

determination of variable values requires some difficult assumptions based on historical 

precedents, trained observations, and theoretical postulation.  As reviewed through this 

chapter, it is essential to determine: 

1. The potential hazards of the system operation, 

2. The process flow of the system, 

3. The probability that the system will be executed as a whole, 

4. The probability that an object within the system will be executed, 

5. The probability that a failure related to an object will be executed, 

6. The severity of that object failure, and 

7. The probability that a failure will result in a hazardous event. 

Potential system safety hazards have been identified using procedures in 

Step 1 and Step 2 of this assessment process.  The process flow of the system has been 

reviewed and mapped in Step 3.  The probability of system execution is based on an 

evaluation of the system and its intended operation, in accordance with development 

requirements.  Such an evaluation should be based on the ratio of system operation to a 

defined sample time.  In a software system providing continuous operation, the Psystem 

execution (se) = 1.0, while in a software system providing operation for only half of the time, 

the Pse = .50.  The sample time period may be a fixed period of time such as a 24–hour 

period, or a conditional time period based on the execution of a specific event such as the 

flight time of an aircraft.  In the case of WACSS, the sample time period would consist of 

the time from aircraft power up to aircraft power down, conditional to flights that would 

employ a weapon.  There is limited justification to conduct an analysis on flights where a 

weapon would not be employed or loaded, or on the time period while the aircraft sits 



194 

idle on the flight line.  Such a decision should be based on the intended function of the 

system during idle and power–up phases countered by the fact that that failure during 

these periods are only a small fraction of the total failures of the system. 

The probability that an object will execute within the system depends, 

again, on the requirements and modes of operation of the system being evaluated.  

System objects can be evaluated independently or grouped as part of a process flow.  The 

method for determining the actual probability of object occurrence is left to the 

prerogative of one making the analysis.  It is not essential to determine the probability of 

objects within paths that do not relate to failures as their execution is not related to the 

safety assessment.  To provide development continuity, it is beneficial to assign a 

standardized set of definitions to identify and classify occurrence probability, as 

previously constructed with the Consequence Severity example in Table 7.  Such a 

probability definition table would include probability levels, frequency key words, and 

definitions, such as in Table 10.  Other items may be included to add clarity to the 

definition. 
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Frequency Definition Probability 
ALWAYS Events will occur through the entire life of the 

system. 1.00 

FREQUENT Events are expected to occur often through the life 
of the system. 0.90 

LIKELY Events are expected to occur several times in the 
life of the system. 0.75 

OCCASIONAL Events are expected to occur in the life of the 
system. 0.50 

SELDOM Events are expected to occur seldom during the 
life of the system. 0.25 

NEVER Events will never occur during the life of the 
system. 0.00 

  

Table 10 Example Probability Definition Table242 

Step 5. Action 2. - Development of Execution Probability Definition 

Categories – Develop a prioritized list of Execution Probability Definition Categories 

with applicable probability levels, frequency keywords, and definitions. 

The Example WACSS Evaluation may require a more complex and 

defined Probability Definition Table, as noted in Table 28. 

Optimally, each event will occur within a given measure of probability.  

Each occurrence can be matched to, or closely to, a defined probability level, based on 

system inspection and the way in which the occurrence maps to the system process.  

Probability levels can either be computed using accepted prediction methods, historical 

precedents, process inspection, or other valid method of estimation.  Such methods serve 

better for testing random input values to existing systems than to the generation of 

probability values.  The more accurately system execution probability can be determined, 

the more accurately the eventual safety result will be. 

                                                                                                                                                 
242  Note:  The Example Probability Definition Table is intended for example purposes, and does not 

reflect the values required for an actual assessment.  Actual values are determined through 
investigation and historical subject matter expertise, and are specific to the specific system under 
assessment. 
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Step 5. Action 3. - Assign Execution Probabilities to System Objects – 

Using the Process Map generated in Step 3.3., assign Execution Probabilities to all 

system objects that relate to system failures identified in Steps 4.1. and 4.2..  Execution 

Probabilities should be based on system inspection, historical precedents, and 

examination. 

System Execution Probability can be determined on either the macro or 

micro level, from the execution of specific requirements or function to the entire system 

operation.  Figure 23 serves as an example of a macro–level examination of the WACSS 

operation.  The example depicts the operation of the WACSS units from aircraft launch 

to landing, while a micro–level examination could concentrate on the time sample of the 

actual launch sequence of the weapon.  Hypothetically, on a 2.0 hour aircraft flight, the 

actual configuring, targeting, and launching of a weapon against a target may encompass 

less than 10 minutes of the entire flight.  To generate a safety value for the system, it is 

very important to understand the macro as well as the micro level of system execution.  

The micro and macro level execution times will affect different mishaps and both are 

likely to affect the same mishap.  For example, the risk of inadvertent weapon release 

(due to the WACSS malfunctioning) is present during the entire flight: therefore, there 

are both macro and micro issues to address.  Another malfunction is the premature 

weapons release: this is likely affected only by the micro issues since the release of the 

weapon while not in the 10 minute weapons launching preparation would be an 

inadvertent release. 

The process of Failure Probability Prediction is similar to the Object 

Execution Prediction, with the exception that failures occurs only when the object 

executes.  Failure Probability is neither on the system macro or micro level as it directly 

relates only to one specific object.  The probability that an object or event will fail in its 

execution depends on the manner in which the object was developed, its employment 

within the system, the resilience of the object, the timing of its operation, and the 

vulnerability of the object to failure.  Failure instances are evaluated directly with the 

object for which they are related.  As with object execution, the method for determining 
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the probability of object failure is left to the analyzer.  As with the Example Probability 

Definition Table in Table 10, a standardized set of definitions serves to identify and 

classify failures into comprehensible categories, as shown in Table 29.  Failure 

Probability levels can be computed using standard failure prediction methods 243 , 

historical precedents, process inspection, or other valid method of estimation including 

the object failure severity.244 

A great body of research has been completed in the field of Reliability 

Modeling for Safety Critical Software Systems and the estimation of failure rates over 

time and operational events. 245   Most of this research assumes that a system will 

predictably fail to a set degree over a given period.  While it is possible to mathematically 

model this concept, the method makes some general assumptions that do not accurately 

reflect the operation of a software system.  Software does not behave in the same linear 

fashion that physical objects do.  Their modes of operation or failure are dynamically 

related to the environment under which the system is placed.  These states can change at 

such a rapid rate that the user may be completely unaware of their occurrence and 

imposition on the system’s operation until it is too late.  The developers can control, to 

some extent, the environment within the system but will have limited control on the 

external environment that can influence the system.  There is no guarantee that the 

environment, internal or external to the system, will provide the same operational state 

for which the system was originally designed.   

It is possible to give a mathematical representation for system reliability 

based on the evaluation of the system over time in a given environment, assuming that 

the system will experience the same inputs and operate in the same environment once it is 

deployed.  In reality, every installation of the software system is unique.  This uniqueness 

                                                                                                                                                 
243  See methods in Section II.E.2 – Traditional Methods to Determine Software Safety 
244  Schneidewind, Norman F., Reliability Modeling for Safety Critical Software, IEEE Transactions on 

Reliability, Vol. 46, No. 1; March 1997. 
245  Schneidewind, Norman F., Reliability Modeling for Safety Critical Software, IEEE Transactions on 

Reliability, Vol. 46, No. 1, Institute of Electrical and Electronics Engineers, Inc., March 1997.  
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requires the developers to include robust levels of mitigation and control elements246 to 

ensure that the system can continue to operate within the desired bounds for which it was 

designed.  The derivation of any probability of operation, failure, or reliability should be 

based on the operation of the system elements as independent units that can be combined 

to generate a complete process assessment.  Such an assessment and probability 

determination may be a combination of traditional reliability measures of operation over 

time, event, or states, the use of heuristic data gained from legacy systems of like design, 

or the use of subject matter assessments by experienced personnel familiar with system 

operation. 

Any determination for probability of execution, failure, or operation 

should be based on a set environmental window.  Should the system operate outside of 

that environmental criterion, then the assessment should be assumed void, necessitating a 

re-evaluation.  Few systems will ever operate in a vacuum.  It is imperative that 

requirements specify the controls and limits necessary to ensure that the system operates 

within the bounds for which the system was tested and that the system has the flexibility 

necessary to operate within the bounds required by the user.  This delicate balance will 

tax the abilities of the developers to provide a flexible system that can be certified “safe.”   

Note:  As failure probability may be relatively small for a given event, it 

is possible to depict Failure Probability with a multiplier extension.  Table 29 and Table 

30 each have a multiplier extension of x10–5, i.e. a probability of 7.50 x10–5 means that 

the object has a probability of failure of 0.000075 for each time it is executed. 

Step 5. Action 4. - Development of Object Failure Probability Definition 

Categories – Develop a prioritized list of Failure Probability Definition Categories with 

applicable probability levels, frequency keywords, and definitions as they apply to 

specific objects within the system. 

                                                                                                                                                 
246  See Section V.E.4.b - Hazard Controls 
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In a perfect development process, each software system object would 

function flawlessly, much less without a failure (the difference previously discussed in 

this dissertation).  As no system is ever without the slightest potential for failure, it is 

essential to measure when, how, and how frequently it will fail.   

Step 5. Action 5. - Assign Failure Probabilities to System Objects – 

Using the Process Map generated in Step 3.3., Failure Process Map from Step 4.2, and 

Failure Severity Categories defined in Step 5.1., assign Failure Probabilities to all 

system objects that relate to system failures identified in Steps 4.1. and 4.2. for each 

severity of failure.  Failure Probabilities should be based on system inspection, 

historical precedents, and examination. 

As with System Execution Probability, System Failure Probability is 

determined on a variety of levels.  The Initial Failure Probability Result is based on the 

failure of a specific object each time it executes.  System Failure Probability is computed 

based on the results of the Object Failure Probability, Object Execution Probability, and 

System Process Flow Analysis.  As each system executes, there is a probability that an 

internal object will execute, and then a probability that that object will fail in some degree 

of severity in its execution.  The next logical process is to determine what the probability 

will be that a failure will be result in a system malfunction.  Such a “what if” requires 

developing a scenario of operation for analyzing the system from the process start to 

malfunction.  In the example WACSS, five primary malfunctions were identified with 

eighteen potential failure groups.  Each of these malfunctions can be transformed into a 

potential failure scenario and process flow, as shown in Figure 24, Figure 25, Figure 26, 

Figure 27, and Figure 28. 

Step 5.  Action 6.  Determine Possible System Hazard Flow – Using the 

Process Map generated in Step 3.3, the Failure Process Map from Step 4.2, and the 

Failure to Malfunction Identification of Step 4.1, determine the possible System to 

Hazard Process Flow.  Such a Process Flow should include all system objects that 

could potentially result in a malfunction and eventually a failure. 
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System process failure can be determined using any of a series of 

probability summation methods.  The selected method should be agreed upon by all 

members of the assessment from the onset, taking into consideration the strengths and 

weaknesses of each of the various summation methods.  The summation process must be 

capable of computing the probability of independent and dependent lines of system flow, 

including applicable presuppositions and post functional actions that contribute to the 

overall process probability of execution and failure.  Previous steps in the Safety 

Assessment provided values for object execution and failure probability.  These values, in 

conjunction with the Process Flow Map, provide the basic elements required to complete 

the Initial Safety Assessment. 

No standard arithmetic notation could be found to denote the process of 

flow of a software system through associated objects and failures.  To overcome this, the 

following notation examples of Example 4 and Example 5 are given with supplemental 

plain language definitions.  Example 4 demonstrates a simplistic object with a single 

failure.  Notationally, the unit can be represented by its failure and object, separated by 

bracketed character, as in the example – F17^P7 {[O12]} to denote Failure 17 of Process 7 

through Output 12.  In Example 5 the addition of Through Objects (objects which the 

process passes through but not necessarily including a failure) are included to represent 

the remainder of the process up to and including the Malfunction.  Free formatted text 

presents an acceptable format for describing the safety assessment as a supplement to 

mathematical notation.247 

                                                                                                                                                 
247 Kelly, Timothy Patrick; Arguing Safety – A Systematic Approach to Managing Safety Cases, A 

Dissertation, University of York, Department of Computer Science; September 1998. 
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F17^P7 
 
Failure (F17) of Process 7(P7) 

Example 4 Failure within an Object 

 

F17^P7 {[O12]} ∪ F18^O12→ M5 
 
Failure (F17) of Process (P7), through Output  
O12; with Failure (F18) of Output O12  
Resulting in Malfunction (M5) 

Example 5 Failure of an Object with throughput to a Malfunction 

F17         P7 

 F18 
 O12 
F17         P7                     M5
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M1 ≤ F1 ^ I1 {[P1, O1]} ∪ F2 ^ P1 {[O1]} ∪ F3 ^ O1 Example 2 

Pf (Mi, d) ≤ Σ (Pf (Fi, d) * Pe (Ai) * Pe (Ai {DAi})) Equation 3 
 

Where: Pf (Fi, d) is Probability of Activity Failure for type, 
Pe (Ai) is Probability of Activity Execution, 
Pe (Ai {DAi})) is Probability of Series Dependant Activity Execution. 

 
 
 
 
 
 
 A1 

 
Assume: 

Pe (I1) = 0.40 

Pe (P1) = 0.40 
Pe (O1) = 0.25 
Pe (I1{[P1, O1]}) = 0.8145 
Pe (P1{[O1]}) = 0.7500 

 
Pf Intermittent F1 = 0.5000x10–5 

Pf Intermittent F2 = 0.6000x10–5 

Pf Intermittent F3 = 0.8200x10–5 

 
Pf Intermittent M1 ≤  Pf (F1, intermittent)*Pe (I1)*Pe (I1 {[P1, O1]}) + 
 Pf (F2, intermittent)*Pe (P1)*Pe (P1 {[O1]}) + 
 Pf (F3, intermittent)*Pe (O1) 
 
Pf Intermittent M1 ≤ (((0.5000x10–5 * 0.40) * (0.8145)) + ((0.6000x10–5 * 0.40) * 0.7500) + 
(0.8200x10–5 * 0.25)) = 0.5479x10–5 

Example 6 Example Probability of Failure Equation 

Example 6 demonstrates one potential method for determining the 

probability of failure for a given IAM.  It can be assumed that each system may have a 

myriad of different process flows that ultimately may result in a malfunction.  In the case 

of the above example, the process flow contains three Failure objects in series, with one 

Through Object, ultimately resulting in a Malfunction.  Singular failure probabilities F1–3 

are determined using appropriate methods, as well as the determination of applicable 

I1 P1 O1

F1 

F2 

F3 

M1
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process execution and related execution probabilities.  Using probability methods 

discussed in this dissertation, it is possible to equate these values to derive a finite failure 

probability for the series.  The summation of series probabilities can be combined to 

derive a final expression of probability that the system will execute a malfunction, as 

shown in Table 32. 

Step 5. Action 7. - Determine the Probability for each Malfunction 

Occurrence. – Using the Object Failure Probabilities from Step 5.5. and the Hazard 

Flow generated in Step 5.6., determine the cause and effect failure probability of the 

system.  System Probability should include consideration of all reliant or dependent 

objects to the system process. 

Early in the Safety Assessment, it was possible to identify Malfunction 

Severity as it related to Malfunction Hazards and Consequences.  Malfunction Severity, 

combined with the computed Probability of Malfunction Occurrence, can ultimately 

derive the Safety of the Software System.  Relating malfunctions to consequences, it is 

possible to assign probabilities of occurrence to each consequence and finally a level of 

Safety to the system.  This assignment of Safety requires the macro definition of a 

System Failure Probability Table, similar to the micro definition table generated in Step 

5.4., and Table 29.  The table should include plain language descriptions and definitions 

of system failure with corresponding values of their frequency of occurrence, based on 

system operation.  The frequency of occurrence references the probability that an event 

will occur for each operation of the system. 

An operation of the system assumes the execution of any process series, 

including those series of operations that do not contain a failure or malfunction object.  

Based on the speed of some software system processors, it is possible for the system to 

execute scores of process per second.  Table 11 shows a possible system failure definition 

table for a given system’s operation. 
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Frequency Definition Probability 
x10–5 

ALWAYS The system will fail each time it is executed. > 100000.00 

FREQUENT The system will most likely fail when executed. 5000.00 

LIKELY The system will likely fail when executed. 250.00 

PERIODICALLY  The system will periodically fail when executed. 10.00 

OCCASIONAL The system will occasionally fail when executed. 2.50 

SELDOM The system will seldom fail when executed. 0.75 

SPORADICALLY The system will fail sporadically when they are executed. 0.20 

UNLIKELY The system is unlikely to fail when executed. 0.05 

NEVER The system will never fail when executed. 0.00 
   

Table 11 Example System Failure Definition Table248 

Step 6. Action 1. - Development of System Failure Probability Definition 

Categories – Develop a prioritized list of Failure Probability Definition Categories with 

applicable probability levels, frequency keywords, and definitions as they apply to the 

system as a whole. 

A measure of safety can now be determined by tabulating the probability 

of system failure against the criticality of a corresponding hazard.  The probability versus 

criticality table has been applied successfully in numerous engineering and management 

safety assessments249 to determine a level of safety of a system.  As shown in Table 12,250, 

251, 252 it is possible to evaluate a system’s probability of failure against the system’s 

hazard severity to determine a value of safety. 

                                                                                                                                                 
248  Note:  The Example System Failure Definition Table is intended for example purposes only, and does 

not reflect the values required for an actual assessment.  Actual values are determined through 
investigation and historical subject matter expertise. 

249  OPNAV INSTRUCTION 3750.6R, Naval Aviation Safety Program, Chief of Naval Operations, 
Department of the Navy; 01 March 2001. 

250 Draft Reference Guide for Operational Risk Management, Naval Safety Center; 09 September 1999. 
251 Operational Risk Management (ORM) Handbook, Subset to AF Instruction 91-213, 91-214, and 91-

215 Operational Risk Management, Air Force Civil Engineers, U. S. Air Force; 1991. 
252  MIL-STD-882B, System Safety Program Requirements, Department of Defense; Washington, D.C.; 30 

March 1984. 
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   PROBABILITY 
   ALWAYS LIKELY OCCASIONAL SELDOM UNLIKELY 
   A B C D E 

CATASTROPHIC I Extreme Extreme High High Medium 
CRITICAL II Extreme High High Medium Low 

MODERATE III High Medium Medium Low Low 

SE
V

ER
IT

Y
 

NEGLIGIBLE IV Medium Low Low Low Low  

Table 12 Example Probability vs. Severity Table 

The horizontal axis is comprised of probability types identified in the 

System Failure Probability Definition Categories (or Malfunction Occurrence) of Step 

6.1, while the vertical axis consists of the Severity Categories defined in Step 2.1.  The 

intersecting point of the two axes represents the safety of the system, or in the case of 

Table 12, represents how unsafe the system is for a given malfunction and hazard.  

Intersection values can be represented as either textual definitions or numeric values 

ranging from the most safe to the completely unsafe.  The actual cell values are again 

based on historical analysis and rationalization from like systems, as well as the 

motivation and political atmosphere surrounding the system. 

Step 6. Action 2. - Development of the Probability vs. Severity Table – 

Develop a two dimensional table representing System Failure Probability on the 

Horizontal Axis and Hazard Criticality on the Vertical Axis.  Assign applicable safety 

values to table cell to represent the safety of the system based on each occurrence and 

corresponding safety level for a given intersection scenario. 

The corresponding cell value of the Probability vs. Severity Table can be 

referred to as a Safety Assessment Index or SAI.  Once the SAI has been calculated for a 

given Malfunction / Hazard or for the entire system, it is possible to judge the safety of 

the system in its current design, determine the necessary processes required for the next 

stage of development, and prioritize necessary resources required to improve the SAI’s 

level if warranted. 
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The criticality of one hazard may seem insignificant when compared to the 

hazards of a separate system, as each system has its own potential set of consequences to 

hazards.  A military system may suffer a catastrophic hazard resulting in the death of 

personnel while a food processing/grinding unit might suffer a catastrophic hazard 

resulting in the loss of a batch of food.  Both hazards are catastrophic in their own 

measure, while comparatively one results in the loss of life and the other in the economic 

loss of bulk ingredients.  It is essential that the evaluation take into account the mission 

and requirements of the system to determine appropriate levels of response to such SAI 

levels. 

For the example WACSS Safety Assessment, Table 32 lists the 

mathematical summation of all probabilities of occurrence for each malfunction at each 

level.  Table 33 represents the System Failure Definitions, outlining the bounds of 

applicable levels of failure.  Using the results of these two tables, in conjunction with the 

Probability vs. Severity Table generated in Step 6.2. (Table 34), it is possible to identify 

probability letter designations, as shown in Table 35.  This step, while not required, will 

assist later in classifying System Failures to Probability Categories. 

The resulting SAI Product can take a variety of forms, ranging from a 

simple numeric value to denote the safety of the system to a textual description of the 

safety of the system, outlining the malfunctions, failures, hazards, consequences, and 

severities of the system with corresponding safety assessments.  A summation safety 

value can be given for the product, assuming worst case and best case for hazard severity 

of the given system.  The format of the product depends on the requirements of the 

assessment team, the manner in which the product may be used, and the format for which 

the team is most comfortable working with.  Regardless of the ultimate format of the 

product, the logic and methodology behind the assessment remains the same.  An 

example of a long form textual SAI result can be found in Section 0 of this dissertation. 

Step 6. Action 3. - Determination of the Safety Assessment Index (SAI) – 

Using the Probability vs. Severity Table developed in Step 6.1., and Failure 

Summations from Step 5, determine the SAI for malfunctions and the summation of 
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the system by the intersection of event probability to hazard severity.  SAI results 

should then be displayed using the method most practicable to the evaluation 

requirements. 

4. Decision Making 
Steps 1 through 6 of the Software Safety Assessment are based on the initial 

phases of the software development process, as depicted in Figure 11.  As the software 

project is still in a stage of infancy, it is flexible enough to permit a refinement, 

remodeling, or redirection of efforts to improve the recently computed SAI value.  The 

SAI should specify the relative level of safety of the system, based on a predefined safety 

index scale established during the evaluation.  The limits of the scale may slide left or 

right, or may expand within its bounds to best represent the safety of the actual system.  

Once the SAI has been identified, it is essential to determine if the system’s safety level 

meets the ultimate requirements of the system’s development. 

Assume that a development requirement stated that, “no portion of the system 

shall have a SAI level above Moderately Unsafe.”  The term Moderately Unsafe has been 

predefined to represent some level of safety in terms of malfunction/failure event 

probability against hazard severity.  The Moderately Unsafe development goal specifies 

some quantitative level of safety that must be obtained prior to system release.  This goal 

grants a level of assurance to developers and users that the product will function within 

some specified limit with a relative probability of a catastrophic event low enough to 

permit open integration and deployment.  In the case of the example WACSS system, few 

events meet the hypothetical goal of a SAI no greater then Moderately Unsafe.  A 

developer may review the intended methods and techniques for subsequent stages in a 

spiral development, to make necessary changes with the purpose to reduce the SAI to an 

acceptable level.  Based on available resources, a decision may be made to address all 

unacceptable events, but prioritize resources so the Unsafe or Extremely Unsafe events 

are controlled first.  If resources are limited, the developer may choose to address only 

those events whose SAI is Unsafe or Extremely Unsafe, and then reevaluate the software 

system to determine the new SAI level.  Each development process poses unique 
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scenarios and limiters that restrict the development and the ability to reduce the SAI 

towards Safe, assuming Safe to represent a system for which no unsafe incident will 

occur.  Regardless of the limitations, the assessment permits a method that will help the 

developers assess the Software Safety. 

a. Variables to Safety Decisions 
The resulting safety assessment and SAI level in no way makes the system 

safer or reduces the quantity of failing objects.  The safety assessment only presents a 

representation of the potential operation of the system, based on a review of system 

objects judged against a predetermined criterion for safety.  The assessment can only 

benefit the system once decisions have been made on the proper course of action to 

improve software system safety.  The ability for developers to make accurate safety 

decisions depends greatly on: 

• The presentation of the safety assessment data, 

• The resources available for the development/redevelopment, and 

• The abilities and foresight of the developers. 

The presentation of safety assessment data must be aesthetic in nature, as 

to permit an efficient and telling view of the information.  Developers should not become 

tied up in the review and interoperation of the data but should be able to quickly discern 

the critical points that could jeopardize the success of the project.  The outline textual 

format of safety assessment data (0) presents all of the required review information in a 

top down fashion that can be quickly referenced with other subordinate data elements.  

Pertinent safety–related system objects and their properties can be displayed as sub 

categories to relevant headers and primary objects.  This format gives the assessment and 

development teams the ability to include or omit data elements that are not applicable to 

the particular investigation and process. 

Additional safety presentation formats include the creation of a Hazard to 

Safety or Malfunction to Safety Table as depicted in Table 13.  For ease of reference in 

Table 13, the Severity and Probability axis reference codes from Table 12 are included.  
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Depending on the scope of the assessment and investigation, additional columns can be 

inserted to add depth and clarity to the table.  In the case of the example WACSS 

assessment, an extended safety assessment table including columns representing object 

failure, malfunctions, and multi–dimensional phases of safety can be used to represent the 

depiction requirements, as shown in Table 36. 

 

HAZARD SEVERITY PROBABILITY SAFETY 

H1 CATASTROPHIC LIKELY I B – Extremely Unsafe 

H2 CRITICAL OCCASIONAL II C – Significantly 
Unsafe 

H3 
MARGINAL / 
MODERATE SELDOM III D – Minor Unsafe 

Issues 

H4 CRITICAL LIKELY II B – Highly Unsafe 
  

Table 13 Example Hazard to Safety Table 

The Hazard to Safety Table can serve as a guide for future safety 

improvement and decision–making.  Based on the safety measure from the assessment, 

the developers and project managers can prioritize hazards by safety levels, based on 

predefined goals and objectives of the development and remaining resources available for 

the improvements.  A requirement of the project might be that no “Significantly Unsafe” 

incidents or greater will be accepted in the development.  From the assessment and 

threshold evaluation, the developers can determine the most viable method of control or 

mitigation for a particular hazard.   

Once developers are able to review and evaluate the results of the safety 

assessment, a decision can be made on the goals for improvement.  The goals for 

software system improvement are based on five principles of hazard control, namely:253 

• Acceptance Accept the identified hazard and resulting 
consequence with no changes. 

                                                                                                                                                 
253 Operational Risk Management (ORM) Handbook, Subset to AF Instruction 91-213, 91-214, and 91-

215 Operational Risk Management, Air Force Civil Engineers, U. S. Air Force; 1991. 
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• Avoidance Avoid the Failure.  Canceling or delaying 

operations of the system that could potentially 
result in an object’s failure. 

 
• Reduction Plan or design the system with minimized 

potential for system failure using mitigation, 
prevention, and error handling. 

 
• Spreading Increase the exposure of the system to positive 

processes while reducing the exposure of the 
system to negative processes, consequently 
reducing the potential for object failure over time. 

 
• Transference Shift the possible losses or cost of the failure to 

other systems, or transfer vulnerable 
requirements to more reliable system. 

 
The decision to implement any one of the five methods of process 

improvement requires an understanding and review of the resources required to make the 

required improvement.  Even acceptance of a hazard requires the expense of some 

amount of resources as the hazard has been investigated and assessed, documentation and 

training is designed to inform others of the hazard, and the hazard is isolated to prevent 

additional change.  It is understood that some level of resources have been expended to 

develop the system to its present level, even if the system is only in its conceptual phase.  

Resources may include, but not be limited to, the time schedule of development, staff, 

budget, facilities, personnel, software, and development and testing tools.  Any changes 

to the system may require some reallocation of resources beyond that already planned.  In 

the case of some changes, specifically Avoidance or Transference where system 

operation is reduced to improve system reliability, the level of system development effort 

might be correspondingly reduced.  In a worst case, without proper management, 

oversight, and functionality, such action could cause development efforts to increase.  

Regardless of the method chosen to reduce the probability of a hazardous event, a 

limiting factor of the method execution will be the resources available. 

As referenced in Chapter III of this dissertation, many software systems 

fail due to the limited abilities and lack of foresight of the developing team.  When 
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developers are incapable of properly designing a system, errors will inevitably surface 

during system’s inspection and operation.  Despite the best of development practices, a 

lack of safety foresight and ability to plan for potential failures will result in a failed 

oversight to safe system operation.  The decision process must evaluate the abilities of 

the developers as well as the foresight for the developers to prevent the addition of 

further errors. 

Assuming that a maximum SAI level has been established in the 

requirements of the development process, the software system can be reviewed to 

determine which hazards must be controlled to comply with the established standard.  

Once hazards are identified, resources and controls can be prioritized in an appropriate 

fashion to improve system safety.  Using the previously defined example of Table 36 and 

the hypothetical SAI requirement for no object to result in greater then a Moderately 

Unsafe action, objects and properties of Table 36 are shaded to indicate which require 

improvement and control. 

b. Hazard Controls 
Of the five classes of hazard control; Acceptance, Avoidance, Reduction, 

Spreading, and Transference, each must be reviewed and understood for their impact on 

system requirements, required resources, ability to implement, and potential benefit, as 

shown in Table 14. 

The decision of which control is appropriate depends greatly on the 

circumstances the control is attempting to manipulate.  Controls must be judged for their 

ability and manner for which they eliminate hazards, the efficiency in execution, 

overhead, expected improvement mission success, enhanced capabilities, and reduced 

risks.  It may be possible for more than one control type to prevent a failure, yet the 

selection must be made on the level of effort required to implement the control and the 

expectations gained from its inclusion. 

Acceptance has absolutely no effect on software system safety hazards, but may be 

optimal in cases where resources are limited, the probability of failure is small, and/or the 
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hazard consequence is minimal.  Some resources may be required to isolate the hazard 

from further development, and to documentation and training customers and developers 

of the hazard. 

The Avoidance or “elimination” control does not solve a failure but rather 

removes the failure by removing system functionality essentially avoiding the triggers 

that induce the failure.  Such a control has a direct impact on the requirements of the 

software system because it removes functionality that may be required by the system to 

operate “completely.”  A decision must be made on the functionality, necessity, or 

aesthetic value of system operations that have been removed to avoid failures.  

Avoidance must be done in conjunction with a critical review of system requirements for 

the elimination of unnecessary overhead while conserving essential operations.  Such a 

removal of functionality requires a review of the importance of the specific process and 

the impact and reliance issues generated by other objects.  If such a function is trivial in 

nature, then it can be removed with little impact on the primary operation of the system.  

Few software–based functions related to system safety are trivial and can be removed to 

improve a system’s SAI level.  Some safety–related software systems are designed solely 

to prevent a hazardous event; therefore, their avoidance or removal would decrease the 

safety of the system and promote a hazardous event. 

Spreading implies the act of spreading or diluting the exposure potential 

of identified failure points out over the system terms of operating time or locality to other 

failure points.  Spreading does not necessarily reduce the number of failures, but 

increases the number of non–failure points, thereby mathematically reducing the ratio of 

failure to non–failure objects and the overall potential for failure for a given set.  In 

laymen’s speak, a tablespoon of poison will kill a rat, but if you diluted the poison in a 

pool of water the rat will have to drink quite a bit of the solution to get the same result.  

Spreading, while mathematically sound, is not always advantageous, as the rat may 

drown from the water before he ever is affected by the poison, so will the software 

system be affected by the introduction of superfluous objects and actions not intended in 

the functional requirements.  The act of spreading is more soundly integrated in non–
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hazardous software systems where the act of hazard control is not one of the prime 

requirements of system operation. 

Optimally, failure or hazard Reduction is the most productive method of 

safety trigger management, as it actually works to reduce the potential for a hazardous 

event.  Reduction stands as the foundation of contemporary Software Systems Safety 

Efforts.  Depending on established system requirements, the potential for a hazardous 

event can be reduced by removing the flaw from the system before it could ever occur.  

For the sake of terminology, not developing the flaw from the onset can be assumed the 

same as removing a potential flaw from the concept.  If a flaw cannot be removed and the 

failure not prevented, failure mitigation can be used to lessen the severity of the failure or 

even prevent the development of the action into a hazard.  Mitigation can include the 

transference of failed processes to other systems for redundant operation, the ability for 

the system to recover and prevent subsequent failures, and the in–line addition of failure 

preventers that can sense the hazardous event and control its propagation and 

consequence to an acceptable level.  Mitigation, while it does not remove the failure 

directly, controls the probability of the hazardous event, thereby increasing safety.  Error 

handling is the ability to sense the fact that an error has occurred, react to it, and prevent 

its continual propagation.  An error handler might cease operation of the failed object 

until it can reset itself and provide a positive output, might provide a supplemental output 

that is within the bounds of system requirements, or might revert to a redundant system 

object capable of providing a reliable output. 

If the potential hazard cannot be reduced, spread out, or avoided, it may be 

possible to transfer the effects of the failure to other portions of the system or transfer the 

most vulnerable requirements to a more reliable or robust system.  Transference can be 

accomplished similar to error handling, as a reactionary process that transfers control of 

the system and associated failure to another unit to prevent or control the occurrence of 

the hazard.  Transference also may imply a preventive measure by recommending the 

transfer of potentially hazardous requirements and unstable objects to other systems to 

isolate and better control their failed occurrence.  Transference reduces the burden of the 
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system to handle failure by shifting the responsibility onto a secondary component.  The 

ultimate reduction is dependent upon the methods of transference and the effort required 

to make this transition.  In some cases, the overall gain to system burden could be 

minimal.  In cases of Transference, the failure does not disappear, but is simply moved to 

a system better suited to react to its occurrence. 

 
 

Effect on 
Hazardous Event Level of Effort Effect on System 

Functionality 
Effect on System 

Safety 

Acceptance None Minimal None None 

Avoidance Significant Medium Significant Minimal 

Reduction Significant Significant Minimal Significant 

Spreading Medium Medium Significant Minimal 

Transference Significant Significant Significant Medium 
   

Table 14 Hazard Control Effect on System Safety 

c. Making the Difficult Decisions 
Given the five primary hazard controls previously referenced as well as 

the introduction of variables to software improvement decisions, it is possible to make 

specific goals and methods for the improvement of the identified software system.  Using 

the shaded example of Table 36 as a basis, thirteen hazards and nineteen consequences 

(some duplicated for given malfunctions) were identified as beyond the acceptable SAI 

limits established in the hypothetical system requirements.  The optimal goal of the safety 

decision process would be to develop/redevelop the system such that the summation of 

SAI levels of each potentially failing object would result equal to or that required in the 

specifications documents. 

Reviewing the steps required to generate the assessment, it is only possible 

to increase the SAI Safety Level of the system by: 
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1. Lowering the criteria for which the system is evaluated against, 

2. Reducing the probability that a failure/hazardous event will occur, 

or by 

3. Reducing the consequence of the hazardous event. 

Lowering the criteria for which the system is evaluated against would 

produce an immediate and linear increase in the “safety” of the system in terms of the 

quantitative value, but will not necessarily result in a reduction in the number of unsafe 

incidents that may occur.  Such an adjustment of the criteria must only be executed if the 

criteria was flawed in its assumptions, a more accurate criterion was discovered, or the 

criteria was refined to add granularity and clarity to the assessment.  Special care should 

be taken to preclude undue influence or pressure to adjust the criteria to a level that 

would mask the actual failure and resulting hazard. 

The consequence of some hazardous events is static for a given software 

system.  In a case where the software system completely fails to control a specific event, 

the event will then occur in an unacceptable and hazardous manner.  Further control of 

the hazardous event must be accomplished by an external system, either a mechanical or 

software system isolated from the original failure laden system.  While the hazardous 

consequence could not be controlled by the given system, its effect may be mitigated by 

additional systems that can act upon it.  In cases where the system retains some control of 

the hazardous event and corresponding consequence, it may be possible to affect or 

reduce the consequence of the failure.  The ability to control the consequence of any 

hazard must be based on the type of consequence, the remaining controls of a potentially 

failing system and the redundant or parallel systems tasked with mitigating the potential 

event. 

The most plausible method of increasing the safety of the software system 

is to reduce the probability that a hazardous event will occur at all.  Procedurally stated, 

reducing the probability of a hazardous event could be accomplished by removing the 

existence of possible flaws, reducing the probability that the failure will occur, reducing 
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the likelihood that a failure could propagate through the system, and the reducing the 

potential that a failure could result in a hazardous event.  It is most advantageous to 

destroy the chain of failure before it ever has a chance to root into the system.  If not 

possible to interrupt the chain, it may be possible to break the links of the chain once they 

are identified by the safety assessment.  Removing the existence of flaws can be 

accomplished through the use of proper design techniques, requirements review, 

development verification, and testing with the aspects of safety in mind. 

The probability of failure can be reduced by: 

• Methods of design, 

• The ability of the system to control inputs, objects, and processes, 

• The redundancy of the system to compensate for failed operation 

(if redundancy is designed for safety), and 

• Reducing the exposure of system to potential failure objects. 

As previously stated, vulnerable objects may be required for the operation 

of the system despite their potential for failure.  In such cases, it may be possible to 

isolate system operation through error handling, failure mitigation, or through the use of 

secondary systems that can isolate the hazardous burden from the primary system.  In 

cases where a safety–related system hazard could not be eliminated from the system, the 

next objective must be to minimize the occurrence and potential severity of the hazard.  

Such controls can be inserted into the software to limit the probability of occurrence of 

the hazard to some appreciable limit or permit the system to quickly recover, preventing a 

further occurrence of the hazard.  Beyond the software control system, it may be possible 

to incorporate mechanical interlocks and safety breaks that can prevent a hazardous event 

should the system fail. 

Mitigation measures designed to improve the safety of a system could 

quickly detract from mission effectiveness by limiting the operational environment, 

responsiveness, reliability, or other desirable attributes, and overall lethality of the system.  

Each decision will have trade offs that must be evaluated for their impact on the safety, 
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mission effectiveness, and operational capabilities of the system.  In some systems, it 

may be beneficial to operate on "the edge of criticality" to obtain optimal system 

performance; understanding and accepting the potential for a hazardous event should the 

system cross over that edge.  In other cases, where the failure criticality of the system 

would pose unacceptable risk should it fail, operating with sufficient control would be 

essential.  Striking that balance between operational risk and system safety risk is 

essential to the successful deployment of the software in the system context. 

Despite the method selected to decrease the SAI level of the system after a 

safety assessment, it is imperative to identify the necessary changes and take appropriate 

action as early in the development process as possible.  It should be noted that the cost 

and time for system repair and modification increases with each recurrent phase of 

development.  The increased expense of such modifications may serve to jeopardize 

system safety as much as the act of a single system failure. 

Using the SAI improvement goal as a guide, it is then possible to review 

the failure, hazard, and consequence lists to determine which elements must be improved 

to decrease the SAI value below an acceptable threshold.  Elements can be evaluated for 

their ease of developmental change and improvement, the degree for which they must be 

improved to meet the system, and the methods and resources required to implement the 

change.  Additional consideration must be given to the effect that any change may have 

on the system characteristics, their requirements, or functionality.  Changes must be 

documented, testable, and not contribute to additional failure probabilities.  Some 

changes may result in increased overhead, expense, or decreased system performance to 

counter the threat of a potential hazard. 

Step 7. Action 1. - Determine Required Improvements – Determine the 

system improvements required to decrease independent and system SAI values to an 

acceptable level, identifying appropriate controls of Avoidance, Reduction, Spreading, 

and/or Transference to each element.  Identify quantitative improvement goals for each 

object that is to be improved, countered by required resources, and cost vs. benefits of 

the actual improvement. 
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The format for any goal improvement depiction should include the object 

to be improved, the selected control type(s), the control specifications of the 

improvement, resources required, any measurable change goal expected in object failure 

probability, and any severity change goal in respective hazard consequences.  Where 

possible, the anticipated change to object/system SAI levels for each object improvement 

should be computed and noted.  Finally, it would be beneficial to outline the anticipated 

effects of the change improvements on system requirements, functionality, and 

performance.  System developers will require adequate justification for incorporating 

additional design requirements into the system.  The table should be formatted in the 

expected order of object improvement execution, taking into account resources 

required/available, effect, and complexity of the improvement.  As resources may be 

limited, it would be possible to budget improvements to get the maximum SAI change 

level before resources are exhausted. 

Using the improved Spiral Model example of Figure 11, working in the 

lower right fourth quadrant of Software Decision Making and Development and 

Validation, it is then possible to determine the best method for modifying requirements 

specifications (if necessary), and for developing the actual project.  Assuming this to be 

the first iteration of development, safety changes and process improvements to the 

software system may be nothing more than changes in requirement specifications, 

anticipated process development methodologies, and resource reallocations.  In 

subsequent stages of development, improvements may include the costly decomposition 

and redesign/development of software code.  Dramatic software redesigns can be 

prevented through prior planning and adherence to proper techniques.  Where possible, 

the safety assessment and decision process should be accomplished as early as possible to 

benefit the system while minimizing the changes to completed portions of the system. 

5. Development 
The development/redevelopment of a system using the new safety directed 

improvements requires no significant changes to existing development practices.  

Nonetheless, the safety improvements will require a greater adherence to the principles of 

safety within those practices.  The earlier that safety precautions can be executed in the 
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development process, the smaller the negative impacts the system will experience 

(rework, lost resources, potential hazard execution), as well as the greater the positive 

impact on software system safety.  While requirements are in review, the demand for 

safety controls should be incorporated into the software system documentation.  To 

ensure that system changes can be tracked and traced, once objects are in development, 

changes and additions of controls should be documented in their respective fashion. 

Step 7. Action 2. - Incorporate Safety Controls – Incorporate the Safety 

Controls identified in Step 7.1. into the Software System.  Changes should be well 

documented in requirement specifications and code development specifications.  Any 

refinements and improvements should take into consideration their effect on present 

objects as well as any related or reliant objects within the system. 

Safety–Critical Software Systems can be highly fragile, depending on the 

criticality of the hazardous event it is attempting to prevent.  It is possible to strengthen 

the fragility of a system by adding specific design features that are robust, proven, and 

serve to mitigate, prevent, or reduce the potential occurrence a hazardous event, 

sometimes referred to as “Defensive Programming”.  Example design features can 

include, but are not limited to: 

• Firewalls that isolate safety–critical code from the rest of the system. 

• Redundancy of critical systems, granting the ability to continue operation 

with a secondary system should the primary fail. 

• Screening and Filtering of system inputs to prevent triggering potential 

failures. 

• Timed Replacements of critical code and system operation to refresh 

system functionality should it become unstable. 

• Data Diversity to sequence various inputs to generate output results that 

are either exactly the same or semantically equivalent in some way. 

• Error Trapping to halt the propagation of system failures through the 

system. 
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• Error Handling to correct system’s operation should the system fail to 

function properly. 

• Checkpoints to monitor system operation and take corrective action 

should the system fail to pass checkpoint tests. 

The use of proven System Object Modeling, CASE tools, and other system 

prototyping design techniques assist in the pre–coding phases of system development and 

provide an opportunity for integrating and testing of various features. 

Firewalls provide isolation of critical components from the remainder of the 

system.  This isolation prevents the flow of potential failures out of critical components 

into the rest of the system, as well as failure flow from the system back into the critical 

component.  Firewalls can also prevent the introduction of known triggers to failure 

prone objects.  The function of a safety firewall may be as a barrier, a filter, or as channel 

to data and process transfer, controlling the dissemination of information through a 

predetermined field of logic.  In cases where the firewall may serve as a barrier, no 

information or process flow will be transferred through to other components not critical 

to the current process.  Firewall filters will only permit the transfer of information or 

process flow that meets a specific criterion, while a channel will permit the flow only 

through a directed path, omitting flow to undesired portions of the system.  Depending on 

the logic within the firewall control, the flow of information or process may flow one 

way or bi–directional, as shown in Figure 17.  F1 represents the use of a barrier firewall, 

preventing the flow of any information from the Alpha Process to Bravo.  F2 represents a 

filtering firewall that checks the flow of information between the two process flows using 

a series of discriminators and proofs.  F3 represents a channel that can logically redirect 

or inhibit information through to various points within the Bravo Process.  Improvements 

to the SAI level are based on the type of failure that each firewall is designed to prevent, 

as well as the functional resilience of the firewall. 
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Figure 17 Firewall Control Example Figure 

Redundancy involves the integration of parallel components or processes to 

backup the operation of critical processes.  Redundancy can be accomplished using either 

two or more identical components operating in parallel, or by the use of dissimilar system 

capable of accomplishing like tasks, shown in Figure 18.  In the case of identical 

components, the system would be capable of reverting to a back up process in the event 

that the primary process failed to operate.  In cases where the environment causes a 

failure of the system, a duplicate redundant system might also experience the same failure.  

Redundant systems must be capable of robust operation in environments conversely that 

of its “twin” or they fail to serve as viable alternatives.  Additional dilemmas exist in 

cases where the input to the primary process resulted in the failure of the primary 

component.  If no change is made to the input and it is subsequently rerouted to the 

secondary process, the same failure will likely result.  Identical components are useful in 

cases where components are susceptible to failure from sources other than input values 

such as operating resources (power failure, storage space, output devices, processor 

failures…), or are susceptible to destruction during the course of operation (catastrophic 

impact, frozen components, combat casualty…).  As an alternative, it may be ideal to 

develop dissimilar redundant components that are capable of providing a complementary 

level of functionality using an alternative method of logic and resources.  Dissimilarity 

permits the flexibility to attempt continued operation using the same potentially flawed 

input and generate a functional output.  In cases of dissimilar component development, 
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additional resources must be allocated that would otherwise not be required in 

redundantly similar systems.  System SAI level improvement is based on the type of 

redundant process implemented in the system.  In redundantly similar systems, the 

probability of failure will only improve to the degree that a failure from operational 

resource or catastrophic casualties could be eliminated.  In redundantly independent 

systems, the system’s probability of failure is directly related to the multiplication of the 

two components’ independent probability of failure254, i.e. F1 = 2.5x10–3, F2 = 4.3x10–3, 

∴ F1, 2 = 1.075x10–5.  Of note, such an example only applies to detectable failures in a 

statistically independent process. 

 

Figure 18 Redundant Control Example Figure 

Screening and Filtering permits the trapping of process inputs and outputs to 

ensure that only acceptable values are permitted to flow through the system.  Filters are 

designed to function in series with the system process flow and react according to the 

limits of the data and screen type.  Filters may continually function to prevent the flow of 

unacceptable values – Active Filter; while other filter controls react to generate 

alternative input / output values to ensure continuous operation – Reactive Filter.  The 

filter can be physically placed before the input of a component it is designed to protect, or 

directly after the component whose output is suspect, as shown in Figure 19.  In addition 

                                                                                                                                                 
254 Littlewood, Bev; The Impact of Diversity Upon Common Mode Failures, The Centre for Software 

Reliability, City University, Northampton Square; London, England. 
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to the straight line Active Filter example, the Reactive Filter contains additional 

processes (PR1 and PR2) that are triggered by filter logic to generate alternative data values 

to support the primary process (P1).  System SAI level improvement is based on the type 

of filter used in series with the system, the strength of the filter, and the reactive logic to 

flawed values. 

 

Figure 19 Filter Control Example Figure 

Timed Replacements involved the refreshing of system code, components, or 

operational states to ensure compliance with some established standard.  A timed 

replacement does not prevent a failure, but rather prevents the continued operation of the 

system in a failed state if: 
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1. The failure can be countered by the refreshing of the system, 

2. The system can survive up to the timed replacement gate, and 

3. The failure has not disabled the ability of the system to refresh itself. 

The replacement is designed to trigger at regular intervals to ensure stability of 

the system, but could be triggered to execute should a separate component of the system 

so command.  Timed Replacement does not reduce the failure probability of a system, but 

may reduce the Consequence Severity by refreshing or restarting operation in a safe state.  

The resulting reduction in Consequence Severity would potentially correspond to a 

reduction in system SAI values. 

Data Diversity serves to generate alternative input values for a process should the 

initial input be outside some prescribed limit. 255  Supplemental values may be completely 

dissimilar to the initial input, but should result in essentially the same or semantically 

equivalent values.  Diversity may be reactive or active in its execution, depending on the 

nature of its design.  Data Diversity is similar in nature to the Filtering Control with the 

additional requirement to ensure that the final result is equal to the expected result while 

using different input values.  Such a control would benefit safety–critical software 

systems where inputs may be generated from various external components in diverse 

formats.  The Data Diversity component may generate conversion values to convert data 

formats or related values that generate near identical values.  In the case of a division 

function, a denominator value of zero would result in a “divide by zero” error.  Such an 

error could be resolved through Data Diversity by changing the input to a near infinitely 

small value.  A Filter may restrict values, while Data Diversity will change failed values. 

Error Trapping halts the propagation of failures through the system by the use of 

data and system status inspection.  When values fall outside of prescribed limits, the error 

trapping logic shuts down or isolates the active process flow to prevent the error from 

                                                                                                                                                 
255 Torres-Pomales, Wilfredo; NASA/TM-2000-210616, Software Fault Tolerance: A Tutorial, National 

Aeronautics and Space Administration, Langley Research Center; Hampton, Virginia; October 2000. 
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infecting additional components.  Error Trapping does not prevent a failure but rather 

prevents the propagation of the failure down through the system and optimally to halting 

a hazardous event.  In come cases, the execution of an error trapping function may result 

in additional hazards as system operation and control is halted to prevent propagation. 

Error Handling builds on the concept of Error Trapping by halting the 

propagation of failure once it is identified, with the additional act of error correction.  

While Error Trapping halts the process flow on error detection, Error Handling attempts 

to continue process flow with a subsequent correction.  Similar to the Reactive Filtering 

Control, as system functionality falls outside of predetermined limits, the control arrests 

the process flow, inserts an accepted response, and then continues the operation.  At the 

system code level, Error Handling can be accomplished through the use of the ON 

ERROR or other like syntax statement.  Error Handling relies on the ability of the 

program to 

1. Sense the fact that an error has occurred, 

2. Recognize of the type of error, 

3. Recognize the failed input if required, 

4. Have knowledge of a potential resolution, 

5. Have the ability to take corrective action. 

The below code example in Example 7 demonstrates a plausible Error Handler 

using Data Diversity for a “divide by zero” error.  The user has the ability to enter any 

desired value for the Numerator and Denominator in lines 7 and 8.  In the event that a 

zero value is entered in the Denominator, the Error Handler will be triggered in line 9.  

The error handler case statement logic would select error #6, which in turn would change 

the Denominator variable to a value approaching near zero.  Line 17 would restart the 

system at the division statement with the new Denominator value for the given error, 
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giving nearly the same result.  For other errors, the Error Handler would not be able to 

come up with a respective solution and would halt system’s operation. 

Error Number 6 is the case return value for Overflow or Divide by Zero errors.  In the below code example, 
the procedure inquires of the operator for Numerator and Denominator values.  If the division results in an 
Overflow or Divide by Zero error, then the procedure will execute its Error Handler.  By select case, should 
the return error number = 6 then the procedure will handle the error by replacing the denominator with a 
near infinitely small value, thereby permitting the execution of the division.  In all other error cases, the 
procedure will alert the user of the failure for further troubleshooting. 
 
1 Private Sub Do_Division 
2 Dim Dnum as Double ‘Double Variable Numerator 
3 Dim Dden as Double ‘Double Variable Denominator 
4 Dim Dres as Double ‘Double Variable Result 
5 Dim Response as String 
6 On Error Goto Error Handler ‘Define the Error Handler 
7  Dnum = Val(InputBox(“Enter the Numerator”)) 
8  Dden = Val(InputBox(“Enter the Denominator”)) 
9  Dres = Dnum / Dden 
10  Response = Msgbox(Dnum & “ divided by ” & Dden & “ = ” & Dres) 
11 Exit Sub 
12  
13 Error Handler: 
14 Select Case Err.Number 
15  Case 6    ‘Overflow or Divide by Zero Error 
16   Dden = 1.0e–32   ‘Make denominator near infinitely small 
17   Resume 
18  Case Else 
19   Msg = "Error # " & Str(Err.Number) & " generated by " _ 
20   & Err.Source & Chr(13) & Err.Description 
21   MsgBox Msg, , "Error", Err.Helpfile, Err.HelpContext 
22   Exit Sub 
23  End Select 
24 End Sub 

MS Basic Example 

Example 7 Error Handler Example 

Checkpoints are designed to monitor system operation and status at various flow 

points to ensure that a specific criterion is met.  If the criterion were not met at the 

Checkpoint, the system would take some effort to correct the status.  Checkpoint controls 

do not prevent an error, but attempt to prevent the propagation of an error past a specific 

point of the system process.  Checkpoints may function in kind with a replacement or 

refreshing function that can either replace unacceptable values or refresh system code and 

status during inspection.  The success of the control, like the Timed Replacement, 
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assumes that (1) the failure can be countered by the refreshing of the system, (2) the 

system can survive up to the checkpoint gate, and (3) the failure has not disabled the 

ability of the system to refresh itself.  Checkpoints may trigger the use of redundant 

components, data diversity, or refreshing system states.  The Checkpoint may halt, 

redirect, or correct process flow, depending on the checkpoint process logic.  The 

Checkpoint control does not reduce the failure probability of a specific object, but may 

reduce the probability that a failure will propagate through the system.  The resulting 

reduction in system failure probability could potentially correspond to a reduction in 

system SAI values. 

The ability of Failure Prevention Controls to prevent the occurrence of a potential 

hazard depends on the tactic of the development, the error/failure to be prevented or 

handled, and the properties of the control, as shown in Table 15.  No single control is 

capable of preventing the occurrence of every hazard.  Depending on the complexity of 

the system and potential failure, it may be necessary to use multiple controls through the 

system to prevent the occurrence of the hazard.  The positioning of hazard controls in the 

system also is dependent on the properties of the control and the intended method of 

employment.  It is essential to position controls in close proximity to the intended event 

to prevent the spreading of unwanted system flow. 

 

Control Trigger 
Prevention 

Failure 
Prevention 

Failure 
Propagation 

System 
Restoration 

Firewall Y Y Y N 
Redundancy N Y Y N 
Filtering Y Y Y N 
Timed Replacement N N Y Y 
Data Diversity Y Y N N 
Error Trapping N Y Y N 
Error Handling N Y Y N 
Checkpoint N N Y Y  

Table 15 Failure Control Properties 
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6. Subjective Factors to Safety 
Putnam and Mah were quoted in Chapter IV.B of this dissertation, that the four 

core measures of a software development include size, time, effort, and defects.  In 

Chapter III of this dissertation, a discussion was made of the potential developmental 

factors that contribute to the safety or failure of a software system.  It may be possible to 

extrapolate that Software Safety would increase or decrease for the modified action of a 

specific set of element variables, without providing a quantifiable result, as follows: 
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Development Element Developmental Action Effect on Safety 

Core Components256 

System Size Increase Size Decrease Safety  

Time to Develop Increase Time Increase Safety / 
Decrease Safety 

Effort to Develop Increase Effort Increase Safety / 
Decrease Safety 

System Defects Increase Defects Decrease Safety 

System Complexity Increase Complexity  Decrease Safety 

Implementation Induced Failures257 

Software Used Outside of its Limits Increased use outside of Limits Decrease Safety 

Over Reliance on the Software System Increased Reliance Decrease Safety 

Software Developed Incorrectly258 
Effects of Political Pressure on 
Development Increased Political Pressure  Decrease Safety 

The Lack of System Understanding Increased Lack of System 
Understanding Decrease Safety 

The Inability to Develop Increased Inability to Develop Decrease Safety 

Failures in Leadership in Development Increased Lack of Leadership Decrease Safety 

Development with a Lack of Resources Increased lack of Resources Decrease Safety 

Software Not Properly Tested259 
Limited Testing Due to a Lack of 
Resources Increased Resource Limits to Testing Decrease Safety 

Software Not Fully Tested Due to 
Developmental Knowledge 

Increased Failure to Test due to 
Developmental Knowledge Decrease Safety 

Software Not Tested and Assumed to 
be Safe 

Increased Failure to Test due to 
Assumed Safety  Decrease Safety 

 
Table 16 Developmental Effects to Safety 

The trend of safety effects in Table 16 can be logically derived through various 

software subject matter sources, while the particular level of safety change may require a 

significant effort and examination of the effect of a particular element to the action of 

                                                                                                                                                 
256  See Chapter IV.B – METRIC DEVELOPMENT. 
257  See Chapter III.C – IMPLEMENTATION INDUCED FAILURES. 
258  See Chapter III.B – SOFTWARE DEVELOPED INCORRECTLY. 
259  See Chapter III.D –SOFTWARE NOT PROPERLY TESTED  
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system safety.  Additional research and metric development may later be possible to 

determine the quantitative effect of the element on safety.  The level of element 

application should be done with the full knowledge of its effect on the system and the 

intended result on the action.  The metric may consist of three or more element 

dimensions against safety, or may be consist of an additional metric stage that can 

provide some factor to the probability of a hazardous event.  For example, the effect of 

discovered system defects vs. the limited testing due to resources may generate a factor of 

probability of a hazardous event, assuming that each defect could have potentially 

resulted in a hazardous event and the limited resource was related to the discovery of a 

possible defect.  In other cases, the element may simply apply to a particular defect 

resolution. 

A detailed review of system requirements will identify and permit isolation of 

many potentially hazardous events that may occur during system operation.  Through an 

analysis of the system requirements, it may be possible to identify and calculate the 

complexity of the software system, based on historical precedents.   

While no concrete measure may exist to determine subjective elemental effects on 

system safety, each element should be reviewed and assessed for their effects in 

successive iterations of development.  The combined effect of some element actions may 

be measured against the safety assessment during redevelopment by computing the delta 

( ∆ ) of the safety index.  Each of the elements should be evaluated before, during, and 

after each cycle of development to determine if their action should be modified or 

regulated to continue or prevent further changes to the safety index.  Some acceptable 

and measurable level of testing must be established at the onset of development, resulting 

in a testing delta.  The ability to link that testing delta to some potential safety hazard 

depends on the testing not completed, the system being developed, and how the untested 

portion may react to cause an unsafe event.  Such a review can be accomplished through 

the use of historical failure events and development decompositions, or through the use of 

identified development taxonomies, as shown in Table 17. 
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1. Product engineering 

1.1 Requirements (stability, completeness, clarity, validity, feasibility, precedent, and scale). 
1.2 Design (functionality, interfaces, performance, testability, hardware constraints, and non–

developmental software). 
1.3 Code and unit test (feasibility, testing, coding/implementation). 
1.4 Integration and test (environment, product, system). 
1.5 Engineering specialties (maintainability, reliability, safety, security, human factors, and 

specifications). 
 

2. Development environment 
2.1 Development process (formality, suitability, process control, familiarity, and product control). 
2.2 Development system (capacity, suitability, usability, familiarity, reliability, system support, 

and deliverability). 
2.3 Management process (planning, project organization, management experience, program 

interfaces). 
2.4 Management methods (monitoring, personnel management, quality assurance, and 

configuration management). 
2.5 Work environment (quality attitude, cooperation, communication, and morale). 
 

3. Program constraints 
3.1 Resources (schedule, staff, budget, and facilities). 
3.2 Contract (type of contract, restrictions, and dependencies). 
3.3 Program interfaces (customer, associate contractors, subcontractors, prime contractor, 

corporate management, vendors, and politics). 
 

Table 17 SEI's Taxonomy of Risks260 

A taxonomy may take the form of a survey with Yes/No or scaled responses.  The 

subjective taxonomies may include some method of scoring or weighting the evaluated 

elements to produce a score or scale of development safety.  For example, a score a 0 

through 10 or grade of “F” through “A+” could be given to evaluate the system 

requirements, with sub–scores assessing the products of requirement stability, 

completeness, clarity, and so on.  Scores or grades could be determined by defined 

criteria with an associated scale.  The subjective measure could be used in tandem with 

the SAI evaluation to generate a more complete picture of system safety. 

Step 8. Action 1 – Determine the Subjective Elements to System Safety 

Development.  Determine the subjective elements to system development that relate to 

                                                                                                                                                 
260 Software Risk Management, Technical Report CMU / SEI-96-012, Software Engineering Institute; 

June 1996. 
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safety and the prevention of a hazardous event.  Determine applicable measures and 

definitions to classify and assess elements for their potential effect to the system. 

Step 8. Action 2. – Evaluate System Subjective Elements.  Evaluate the software 

system for elements identified in Step 8.1..  Assign a grade or measure to system 

elements indicating their compliance to assigned definitions, derived from Step 2 Action 

1 and Step 5, Actions 1 through 7.  Summarize evaluated elements to determine the 

overall effect of subjective elements on software system safety. 

F. SUPERVISION OF SAFETY CHANGES 

A Software Safety Assessment is not viable unless it can be measured, 

implemented, redeveloped, and then re–measured.  It is not realistic to imagine that 

Software Safety techniques can have any effect without proper management and 

supervision of their execution.  Development without oversight is essentially hazardous 

and significantly adds to developmental risk. 

Safety development / redevelopment using the identified hazard controls and 

safety elements and techniques serve no benefit unless they are integrated correctly, 

monitored, and reassessed for their effect on the system SAI level.  The monitoring of 

development and change improvement require a consolidated effort of all members of the 

development team as well the leadership to ensure that changes contribute to the system, 

rather then harm.  After the first iteration of development, it is necessary to review 

subsequent stages to determine what level of improvement was gained versus the 

intended SAI goal.  The foundation and success of supervision requires: 

• An understanding of the practices of Software Safety, 

• Authority to make change decisions, 

• The aptitude to identify potential change tactics, 

• An understanding of the current system, requirements, and development 

goals, 

• An understanding of the intended change product, 
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• The aptitude to make interim safety assessments during development, and 

• The leadership to control the development process and meet the required 

SAI levels. 

It is critical to safety development success to supervise and manage the 

application of safety principles, to monitor for benefit, and intervene or prevent additional 

hazard executions.  Safety Supervision strongly relies on a knowledge base of trained 

subject matter experts with experience in system development with an emphasis towards 

safety.  These experts may or may not have experience in the development of software, 

but have an understanding of the principles of system safety and their managed 

implementation.  Supervision consists of: 

• Determining a realistic safety index goal, 

• Authoring the development plan to obtain the goal, 

• Managing the development to meet the goal, and 

• And measuring to determine if the goal is met. 

The steps of safety supervision may not be completed in a single cycle, but across 

a series of cycles, through the completion of development.  The management technique 

selected should be based on the proven methods and standards such as Software 

Configuration Management (SCM) or Capability Maturity Model Management (CMM).  

The supervision should be well documented and provide methods for assessment and 

peer review.  Various military and civil standards have been reviewed in Chapter II.E.1 

of this dissertation that includes methods of supervision. 

Step 9. – Supervise the Safety Development – Using accepted methods of 

supervision and software management, supervise the development of the software 

system to ensure compliance with the principles of safety development.  Ensure 

compliance with applicable development methods, system requirements, and safety 

assessments.  Ensure that system developmental failures are identified and remedied as 

soon as possible in the current or next development cycle, or are acknowledged for 

their fragility to customers.  At the completion of the current developmental cycle, 
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commence where applicable, the next successive cycle and Step 1.1 of the Safety 

Assessment. 

G. ASSESSMENT OF VALIDITY / EFFECTIVENESS OF THE MODEL 

It would be beyond the scope of this dissertation and model to create a metric 

capable of measuring all aspects of the development process and system functionality, 

and further capable of accurately generating an all–encompassing safety measure.  The 

number of elements that contribute to the safe development and execution of a software–

based system can reach near infinite.  The validity of this model can be assured through 

the establishment of realistic measured goals and objectives. 

The primary goals of this model are to: 

1. Determine a quantitative value for the number of failures during a period 

of system operation, and  

2. Determine a qualitative value for the safety of system operation.  The 

terms failure and safety have been previously defined, as they apply to this 

dissertation study. 

The number of failures that may occur during a system’s element operational 

period can be identified through any of a series of previously discussed methods.  Each of 

these methods contains their own failure probability that can be affected by a variety of 

triggers or external stimuli, potentially inhibiting the proper operation of the element.  

Presented is a method for incorporating the success and failure of individual elements 

into a combined system failure probability using accepted methods of probability and 

statistics. 

The quantitative product is validated through the use of existing failure rate 

methods commonly used and accepted within the state of the art.  Due to the limits of this 

study, I make no attempt to justify one failure rate method over the next.  The decision to 

use a particular failure rate method is determined by the individual developer, based on 
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personal preference, appropriate relationship to the element/system being evaluated, and 

amount of effort/resources required to determine the failure rate.  The summation of 

elemental failure rates is accomplished through the use of accepted mathematical 

methods.  The validation of any failure rate method can be justified or evaluated against 

actual failure rates after project completion or during system testing.  These validations 

would compel the selection of specific measures during subsequent assessments.  

The qualitative value of safety is more difficult to validate, as there lacks any 

comparable form of determining a value for safety.  Many of the existing safety 

evaluation methods are subjective or qualitative in nature and are directly related to the 

failure rate of a system, taking into consideration the effects of controls and filters, the 

various operating conditions of the system, and the significance of potential hazards.  

Other evaluation methodologies, such as those proposed in MIL-STD-882D, the JSSSSH, 

the NASA Software Safety Standard, and IEC 61508, assume that the requirements are 

imperfect (from a safety perspective).  From that imperfection, the failure rate of a system 

becomes a reliability issue that may or may not influence safety.  Many mishaps can 

potentially result from software functioning without a failure, but as the requirements 

specified it to execute.  Imperfect requirements may not bind the software sufficiently to 

prevent a hazardous event.  Most of the controls and filters are at the micro–level and are 

designed to handle specific failure modes or other causal factors.  Their beneficial effect 

affects only the failure mode (causal factor) for the hazard being addressed.  At the 

system level, the system safety analysts address all hazards and their causal factors as 

well as the mitigation built into the system to reduce the overall risk.  The method 

developed and presented in this dissertation use some subjective basis for determining 

safety thresholds.  These thresholds can be standardized for all similar systems within the 

state of the art of high–assurance Software Engineering. 

As there lacks any existing safety method for basing the dissertation against, it is 

only possible to validate the process through which the method evolves.  As previously 

introduced in Chapter I.E of this dissertation, safety was determined through the 

evaluation of the following factors in Table 18. 
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Complexity 
Veritability of Inputs 

Cleanliness of Inputs (Quality) 
Dependability / Reliability Factor of Inputs 

Ability to Sanitize Inputs (Correction) 
Consequences of Sanitization 

Ability to Filter Inputs (Prevention) 
Consequences of Filtering 

Permeability of the Requirements 
Permeability of the Outputs 
Veritability of Outputs 

Ability to Verify Outputs (Quality) 
System quality control 

Ability to Sanitize Outputs (Correction) 
Consequences of Sanitization 

Ability to Filter Outputs (Prevention) 
Consequences of Filtering 

Probability of a Fault 
Consequence of Fault 
Probability of Failure 
Consequence of Failure 
Product Safety or Dependability Index. 

Table 18 Quantitative and Qualitative Factors of Safety 

Chapters IV and V of this dissertation address the validation and computation of 

each of these values independently.  The evaluation of these results against a developed 

threshold demonstrates the benefit of the presented method.  I further define the methods 

required to create acceptable threshold standards for the evaluation.  The effectiveness of 

the method can be judged by the following factors: 

• By the level / extent for which a system must be evaluated to generate 

quantitative values – increased investigation increases the probability that 

weaknesses will be discovered and corrected, thereby improving safety. 

• By the use of a repeatable method for determining the safety of a system – 

increasing user proficiency through the repeated use of a standardized 

procedure, thereby assuring a more stable performance in the evaluation 

process. 
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• By the use of reusable safety threshold gates – increasing the depth of the 

model by the use of standardized evaluation practices, thereby increasing 

the acceptance of the safety evaluation method. 

• By the use of customizable bounds, limits, and definitions that can be 

tailored to meet the specific needs of the developers – increasing the 

adaptability of the metric to the particular requirements and methodologies 

necessary for efficient development. 

• By the ability to catalog measured system element performance in various 

systems – increasing the ability to compare and relate the system 

performance and safety of one system against the historical performance 

of a second associated system, increasing the ease of use and efficiency of 

the system. 

• By the incorporation of effective correction methods – increasing the 

safety of the system by the inclusion of logical processes to strengthen and 

protect the system, thereby increasing safety. 

The primary function of this method is the ability to place a value of safety upon a 

software–based system.  The validity of that method is still based on the ability of the 

evaluator to employ the principles of the metric, recognize the potential faults and 

hazards from within the system, and to make the appropriate corrections required to 

increase the safety level to an acceptable level. 
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H. COMPARISON TO PREVIOUS WORKS 

Chapter II.E.1 of this dissertation outlined the state of the art of Software Safety 

standards, while Chapter II.E.2 reviewed the state of the art of safety evaluation methods.  

While evaluating the relatively small field of software based safety–related methods, it is 

evident that there exists no safety evaluation method that can assist developers in 

accurately determining a true value of a software system’s safety.  Many of the observed 

metrics detail methods for identifying faults and hazards within a system, while other 

metrics detail how to make a system safer, some as simplistic as to imply that a system 

safety is directly related to faults.  APPENDIX D.1 of this dissertation consists of a 

review of predominant Software Safety Standards and Techniques. 

The method introduced in this study presents a unique approach to Software 

Safety Assessments beyond that offered by existing methods.  While the methods 

investigated for this study provide some benefit to Software Safety through process 

improvement, 261  the presented method introduces a complete lifecycle philosophy 

towards the development and employment process of high–assurance systems with new 

or refined definitions, a methodical assessment process, customizable thresholds, 

methods for limiting failure severity, and process improvement.  Due to the infant nature 

of software development and the field of Software Safety, and the new methods 

introduced within this dissertation, there exists little similarity to current works of the 

same field. 

I. CONCLUSIONS 

Software development contains an inherent level of risk that could potentially 

jeopardize the completion and success of a software system project.  It may be possible to 

develop a metric to measure the risks to software development using elements and 

properties that assess the size, complexity, and fluidness of a system.262  The concept and 

                                                                                                                                                 
261  See Chapter II.E – STANDARDIZED FOUNDATION OF SOFTWARE SAFETY 
262 Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 

Postgraduate School; Monterey, California; September 2000. 
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rationale for determining Software Safety is well rooted in mathematics and procedural 

methodologies, while the application of such an assessment remains to be completed.  

This chapter has presented a plausible format for developing such a metric, based on 

accepted and proven methods of system safety, tailored to configure to the demands of 

software based systems.  The ultimate goal of a safety assessment would be to solve for 

[ S = Σ P(H) * C(H) ].  The stepwise process introduced in this chapter and demonstrated 

in APPENDIX E offers a plausible method to determine the safety of the system.  While 

the study of Software Safety and Risk Management contains methods of preventing an 

unsafe occurrence, the use of a mathematically based metric provides a tangible measure 

for determining how safe a system may be.  
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VI. APPLICATION OF THE FORMAL METHOD FOR 
EVALUATION OF SOFTWARE SYSTEMS 

“Engineers should recognize that reducing risk is not an impossible task, 
even under financial and time constraints.  All it takes in many cases is a 

different perspective on the design problem.” 
 

 – Mike Martin and Roland Schinzinger, Ethics in Engineering263 
 

While many disciplines of engineering rely on adherence to the laws of nature 

(i.e., aerospace, civil, and mechanical engineering), Software Engineering relies on man 

to determine the laws and bounds based on which the software system is constructed.  

The independent developer is capable of determining and assigning new laws that bound 

and controls the software system.  This fluid structure grants great liberty to the 

developer, while adding a significant degree of risk and failure probability to system 

development and operation. 

Software Safety Assurance requires the combination of various disciplines to 

ensure a successful and acceptable264 development product, including: 

• The ability to develop safer software,  

• The ability to measure the development of the software system, as well as 

system functionality, and 

• The ability to take system measurements and apply them to generate a 

measure of system safety. 

The ability to develop safer software is well documented.  The concepts and 

practices of Software Safety Assurance range from the obvious “To make software safer, 

prevent the occurrence of hazards”; to the more complex concepts of software 

                                                                                                                                                 
263  Martin, Mike; Schnizinger, Roland, Ethics in Engineering, McGraw-Hill Science/Engineering/Math 

Division, 3rd edition; 01 February 1996. 
264 Note:  The term “acceptable” denotes the fact that no safety critical system can be considered 

absolutely without the potential for a hazardous event.  It is possible though, to determine a level of 
hazardous events that would be acceptable to system operation. 
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development management, methodology, and practices.  Many of the current standards of 

Software Safety Assurance are included in Chapter II.E of this dissertation.  The 

limitations and ability of a development team to actually create a system at some actual 

or arbitrary265 level is reviewed in Chapter III.  The ability to make a system under safe 

conditions does not necessarily infer safety; it only implies that the system was designed 

under such safe conditions.  A sound assertion of safety can only be accomplished 

through a measurement of the product by an accepted metric. 

The capacity to measure the development of a software system is varied, 

depending on the intended product of the measurement, the software system in question, 

and the resources available to make such measurements.  Lines of code266, complexity, 

temperature267, volatility268, and required resources all provide some type of measurement 

that can be used to determine the ability of a team to actually develop a software system.  

Chapter II.E included a discussion of the potential measures that could contribute to an 

assessment of the software development, while their applicability toward Software Safety 

was reviewed throughout this study.  Mean time to failure, hazard occurrence probability, 

and Consequence Severity are all acceptable measures that contribute to determining the 

safety of the software system.  The more difficult task is to find a way to take the 

resulting measurement and logically apply it towards some resulting Software Safety 

value. 

A Measure of System Safety is one the Holy Grails of Software Engineering.  

Many organizations and private corporations have touted its existence, while its 

foundation is based largely on hearsay and loose theoretical assumptions.  Each safety–

critical software system may have one or more potentially hazardous events, each with 

                                                                                                                                                 
265 Note:  The term “arbitrary” denotes the fact that many software professionals have no concept of how 

safe they desire the system to be.  Many developers and customers fail to understand the mechanics of 
software failure and thereby desire an absolute value of safety without perception of the consequence. 

266 Note:  Lines of code or any count of modules, function points, or other acceptable elements of the 
software system. 

267 Saboe, Michael S.; Software Technology Transition, Entropy Based Engineering Model, Software 
Physics, Naval Postgraduate School; Monterey, California; March 2002. 

268 Nogueira de Leon, Juan Carlos; A Formal Model for Risk Assessment in Software Projects, Naval 
Postgraduate School; Monterey, California; September 2000. 
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their own potential for occurrence and operation, and each with an independent measure 

of acceptance.  The statement that a system is safe must take into account each of the 

independent elements of system operation and failure only in so much as they apply to 

Software Safety.  Any review of software system operation beyond those that could 

potentially result in a hazardous event is not required. 

A. A SAFETY KIVIAT MODEL 

After all of the assessments and testing has been completed, it still falls upon the 

developers and clients to determine if the system is actually safe enough for employment.  

Multiple criterions have been established from the requirement’s specification documents 

that spell out the thresholds for the system’s safety.  In the end, the level of safety hinges 

upon a series of factors that combine to generate a confidence, and ultimately, a level of 

safety.  Such factors would including, but not be limited to: 

• Logic, including the use of Controls and Mitigators, 

• Process and Methodologies, 

• Experience of the Requirement’s Authors, Designers, Developers, and 

Integration Teams, 

• Reuse of Trusted Systems, and 

• Testing and Assessment Methods 

In the development process, as the performance, competence, or proficiency of 

each of the elements – Logic, Process, Experience, Reuse, and Testing – increases, the 

ultimate confidence in the system increases, directly resulting in an improvement in 

Safety.  Each of these elements has a direct relationship upon the other elements within 

the group, essentially complimenting their performance.  As Logic increases, the Effort 

required to implement the Process and Methodologies decreases, increasing the level of 

performance of the Process.  As the Reuse of proven elements increases, then the effort 

of Testing decreases, permitting greater resources to be expended on other critical testing 

elements.  Experience has a direct effect on the performance on all of the elements. 
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Using the Kiviat graph technique, it is possible to depict the levels of performance 

of each of the elements as they relate to Software Safety Engineering to demonstrate a 

measure of confidence for the development process.  Figure 20 demonstrated a potential 

method for depicting the elements with each gradient representing the level of 

performance of the element.  The center gradient would represent a non-existent level of 

proficiency for the vector, increasing out the highest level of proficiency at the end of the 

vector.  Connecting each point on the vectors creates a bounded area representing the 

total proficiency of the development process.  The Kiviat graph can represent a visual 

depiction of the development process when concentrating on Software Safety, vice the 

traditional measurements of the software components.  Encouraging a strong emphasis on 

the system safety process during development, the greater the area, the greater the 

confidence an engineer may gain in the system’s development, thereby implying greater 

system safety. 

 

Figure 20  Kiviat Depictions of Safety Related Elements 

Through continued refinement, the ultimate Kiviat graph may contain any number 

of elements that contribute to the safety of the system through development.  Using the 

Kiviat graphic, it is possible to visually depict the elements of the development process, 

demonstrating balance within the apportionment of resources and tasking, relating a value 

of confidence, and implying a level of effort necessary to complete the construction of 

the system in the early stages of development.  Rather then existing as a static product, 
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the resultant Kiviat graph would serve as a dynamic representation of safety elements 

throughout the lifecycle of development.  This depiction can be reassessed at periodic 

stages of development and then compared at the end process for validity.  Once refined, 

such a model could be used to associate safety to each of the elements and to the 

associated bounded area.   

B. EFFECTIVENESS OF THE METHOD 

The goal of the Software Safety Assessment is to determine a level of safety for 

the software system.  The effectiveness of the method is based on the evaluator’s ability 

to investigate the system requirements; identify potential hazards, failures, and 

malfunctions; and determine probabilities of event activities.  From that assessment, it is 

then possible to evaluate the system against established thresholds.  System thresholds 

are established based on criteria from the development requirements, historical 

precedents, and subject matter expertise. 

The effectiveness of the assessment can be judged by the comparison of identified 

failures, malfunctions, and hazards; probabilities; and consequence severities against 

actual results observed after system employment.  It would be perilous and foolish to 

leave known hazards in the software system to observe their result in a real–world 

environment.  Depending on the system and identified hazards, it might be possible to 

simulate the real–world operating environment, but the simulation could mask events 

otherwise occurring in an uncontrolled environment.   

If it were possible to identify and control unacceptable hazards, the system could 

be deployed and observed in the real–world environment.  In this state, the system could 

be evaluated and compared against the development assessment.  The difference between 

observed and predicted actions result in a measurement of the effectiveness of the 

assessment.   

In cases where it would be impracticable to permit the system to operate to its 

failure; either due to limited resources (time, capital, testing mechanisms…), the 

infrequency of unidentified failures, or desire to have a real time measure of assessment 
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effectiveness; it would be possible to compare the findings of the Software Safety 

Assessment against the findings of similar system assessments.  Such a comparison could 

only be accomplished where there exists an archive of software systems and their safety 

assessment results.  Such a library would not be unlike that of today’s software code 

libraries or COTS / GOTS repositories.   

C. AUTOMATION 

As stated in Chapter IV.B, the success of a Software Safety Metric relies on 

robustness, repeatability, simplicity, ease of calculation, and the potential for automatic 

collection.  As previously presented, the Software Safety Metric meets all of the 

requirements for metric acceptability, with the exception of automatic collection.  The 

concept of a mathematical approach to determining the safety of the system is very robust 

to change, with the exception of the additional burden on the developer to assure that the 

results are part of the new computation.  The mathematical principles supporting the 

computation do not change for each iteration of development and are actually stable from 

project to project.  Within a well defined system, the ability to independently repeat and 

arrive at like conclusions should be assured, as long as each evaluator completely 

understands the practices of software evaluation and probability computation.  By the use 

of standardized practices, the metric is intended to be simplistic and require little training 

to perform.  Through the use of accepted probability and statistics equations, and the 

ability of developers to limit the metric to fit their specific requirements, the complexity 

of calculation is greatly reduced. 

While the use of such a metric standard may be possible to some degree, the 

ultimate trial comes from the ability to automate the collection and computation process, 

thereby ensuring compliance and standardization to the metric fundamentals.  The results 

of each assessment can then be archived and reevaluated for conformance of metric 

predictions of safety levels to measured failure rated after the system has been 

implemented.  With the repeated appraisal of the assessment process and metric 

computations, modifications and enhancements can be made to this research to continue 

the improvement of the state of the art.  Safety Assessment Automation would reduce or 
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eliminate the need for human intervention in the collection and evaluation process, 

assuring repeatability and ease of use.  Such automation must be unidirectional, from the 

system to the automated metric, ensuring that the metric automation system does not 

inadvertently introduce a potential flaw or failure to the system under investigation. 

Currently, there exist numerous commercial code–level software test and 

development tools that can evaluate and control the robustness of a system.  Such 

automated design level tools, like the Ada–based compiler Spark269, intend to prevent 

software-induced failures during code development, while they lack the ability to prevent 

design deficiencies in specifications and implementation.  Test level tools, such as the 

Ada–analysis tool AdaSTAT 270 , attempt to evaluate the finished product code for 

completeness and violations of project–specific language restrictions.  Pre–code level 

design tools, fabricated to develop the elements of the system before coding commences 

attempt to determine system elements and their operating parameters before the scripting 

of actual code.  Tools such as CAPS271 or PSDL automate the design process through 

prototyping and object creation.  Some prototype tools are capable of automated base 

level code creation from the trial product.  For example, CAPS is based on a prototyping 

language with module specifications for modeling real-time systems and combining 

reusable software.  Such tools make it possible for prototypes to be designed quickly and 

executed to validate requirements.272  The addition of an automated safety assessment 

module to such a prototyping system would increase the efficiency of system 

development by permitting near simultaneous development in conjunction with a safety 

evaluation in the initial stages of development.  It must be assumed that each system 

development tool and compiler is free of defect and that the product that is produced 

contains no logic based failures beyond those defined in development.   

                                                                                                                                                 
269 Barnes, John; High Integrity Ada, The SPARK Approach – Spark 1.00 for Windows, Addison-Wesley, 

Praxis Critical System Limited; 1997. 
270 AdaSTAT – Ada Static Analysis Tool, DCS IP, LLC; Alexandria, Virginia; 2002. 
271 CAPS – Computer Aided Prototyping Systems, Naval Postgraduate School; Monterey, California. 
272  Faculty Research Catalog of the Department of Computer Science, Naval Postgraduate School, 

Monterey, California; April 2003. 
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Despite the abundance of code-related design tools, I have noted that flaws and 

errors in code methodology are only one of a chain of potential elements that leads to 

determining the safety of a software system.  Invariably, the most likely source of safety–

related failures is in the requirements specification.  They are generally incomplete, 

inaccurate, ambiguous, and subject to interpretation.  Ultimately, an automated tool must 

include the tracking of software system development from requirements to the test 

product with some integration to system operation.  Currently, many developers rely on a 

menagerie of different management tools including Microsoft Project273, DOORS274, or 

other homegrown databases and documents.  Within the flexibility of these tools, is the 

ability to tailor the product to meet the explicit needs of the organization.  Each of these 

management tools, while highly flexible, detracts from standardization while adding 

functionality. 

It is possible to develop a software–based system on two levels: 

• Capable of taking user inputs to manage the development of the software 

system and generate a possible Software Safety Index, and 

• Capable of taking user inputs, coupled with third party automated software 

tools, to manage the development of the software system and generate a 

possible Software Safety Index. 

The development of the first system is highly plausible, assuming that a 

standardized methodology of software management and documentation can be agreed 

upon.  It would be possible to gather and present system requirements, establish system 

safety limit tables, manage system development and tasking, prompt user assessments at 

the base level, and produce an automated SAI output.  The development of the second 

system, while increasing the level of assessment automation, would be more difficult as it 

must rely on the functionality of third party development tool.  The Software Safety tool 

must assume the static development of the third party tool (no improvements), and the 

                                                                                                                                                 
273 Microsoft Project 2000, Microsoft Corporation; Redmond, Washington; 2001. 
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continuous use of the current software language and format (assuring use of the third 

party tool).  It would be more applicable to tie the concept of Software Safety Assurance 

and management directly into the development of future software development tools.   

The presentation format of assessed data can be as critical as the data itself.  

Properly presented, the data can be easily translated and understood by members of the 

development team.  The data presentation format could be tailored to meet the needs and 

preferences of the developers and the clientele.  Various software development tools have 

automated modules that can present assessed data in preformatted report formats 

including Gantt charts, object flow charts, and stop light depictions. 

Until such time that an automated safety development tool is created, the 

Software Safety metric can be semi–automated using any of a number of spreadsheets, 

database, or development management tools. 

D. METRIC 

The stepwise format of the Software Safety Assessment permits a structured flow 

for implementing the metric.  Despite lacking automation, the structure flow of the metric 

could be manually blended into the existing development process by overlaying metric 

procedures into accepted spiral development models.  It is not essential that metric steps 

be accomplished uninterrupted, rather efficiency dictates that steps be incorporated in 

order throughout the development and implementation process to provide real–time 

opportunities to alter and correct potentially unsafe processes. 

                                                                                                                                                 
274 DOORS, Telelogic AB; Malmö, Sweden; Irvine, California; 2001. 
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The success of the Software Safety Assessment metric depends on the following 

factors: 

• An understanding of the consequences of potential failures.275 

• The ability to use hazard awareness and identification in a mitigation 

process that reduces the potential for hazardous events.276 

• The integrity to identify weaknesses in the software process without fear 

of negative consequences or reprisals.277 

• The repeated use of the metric to build confidence, proficiency, and 

adaptability to the development process.278 

• Access to industry and field library resources to gain broad–based 

situational awareness to the state of the art of Software Engineering.279 

• Standardization in the design and nomenclature of hazard and severity 

tables tailored to the field of high–assurance systems.280 

Despite any lack or availability of resources necessary to make safety changes discovered 

in the assessment process, it is essential that individuals make the required assessments to 

gain awareness of the potential for the system.  Should the system fail in the future and 

result in a hazardous event, it may be possible for the developer / owner of the system to 

prepare reactionary processes to compensate or mitigate for the event. 

                                                                                                                                                 
275  See Chapter V.C. - INITIAL IDENTIFICATION OF THE HAZARD 
276  See Chapter V.E.4. - Decision Making. 
277  See Chapter III.B.1. - Political Pressure 
278  See Chapter V.F. - SUPERVISION OF SAFETY CHANGES  
279  See Chapter VI.C. - AUTOMATION 
280  See Chapter II.G.1. - Comparisons of Safety Definitions 
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E. MANAGEMENT 

1. System Managers 
The success of Software Safety relies on the management of and proper adherence 

to the principles of software development and employment.  Managers must be well 

aware of the requirements of a Software Safety Assessment, as well as the tools, methods, 

and practices required for such a development.  The use of an automated tool would 

greatly increase the efficiency of the Software Safety Assessment process, decreasing the 

burden on the development manager.  It is imperative that management discovers and 

provides the tools and resources required for an efficient development process that 

encourages complete development, compliance to accepted requirements, and the 

reduction of potentially unsafe events. 

Management is ultimately responsible for the successful integration of the 

safety assessment into the Software Engineering process. 

Managers must present an atmosphere that encourages a realistic assessment of 

the product, does not discourage members for discovering faults, and rewards members 

for the discovery of potentially unsafe faults that can be corrected.  Management is not 

deterred from punishing members who create a potentially unsafe element, as long as the 

reprimand does not detract from the overall success of the engineering process. 

The atmosphere that management presents to the development and 

implementation process, and the emphasis for which they put on safety assessments, 

directly affects the success or failure of a program.  If a manager places little concern for 

safety and project completeness, then engineers may potentially disregard required 

process steps as burdensome and without merit.  If a manager establishes accountability 

and training towards a goal of increased Software Safety, then engineers will potentially 

incorporate those traits into the software process.  It becomes the manager’s duty to 

discover a balance between efficient development of a high–assurance software system  
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(efficiency measures including the reduction of potentially unsafe events) and the over–

burdensome requirement of safety verification beyond that which would create a 

diminishing return. 

2. Metric Management 
It is my opinion that the success of any process relies on three basic principles: 

(1) Its acceptance among the professional body for which it represents, 

(2) Its ability to provide a usable product, and  

(3) Its ability to adapt and be customized for changing environments and 

improvements in the state of the art for which it represents. 

The safety assessment process introduced presents a refreshing view to the field 

of Software Development and Engineering.  The introduction of these concepts and 

methods to the body of Software Engineers should be accomplished in three distinct 

phases: 

(1) The introduction of safety, failure, and hazard definitions as they apply to 

the field of Software Engineering, 

(2) The introduction of hazard and severity tables, as demonstrated in this 

dissertation, and 

(3) The incorporation of the stepwise safety assessment process, utilizing 

definitions and tables introduced in the first two phases. 

The introduction of the dissertation subject matter would be accomplished 

through its published incorporation in various professional journals and periodicals, as 

well as at lectures and gatherings where new methods can be openly introduced, 

discussed, and reviewed by contemporaries of the Software Engineering field. 

Managing the extended life of the safety assessment process requires some 

acceptance by the professional field of Software Engineers.  The professional field is not 

limited solely to organizations such as System Safety Society, the American Society of 
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Safety Engineers or IEEE281, but to include specialized organizations such as ASCE282, 

ASME 283 , NSPE 284 , DISA 285 , DARPA 286 , NUREG 287 , and BSI 288 .  Academic 

organizations and symposiums, such as the Monterey Workshop, sponsored by the 

Software Engineering Department of the Naval Postgraduate School, provides a valuable 

opportunity for introducing the method of safety assessments to a wide body of Software 

Engineers as well as governmental and private organizations interested in increasing the 

safety of high–assurance systems. 

The software assessment presented in this study is designed to provide two 

products to the Software Engineer – The quantitative measurement of software failures 

through the software lifecycle; and the qualitative measurement of Software Safety.  The 

ability to accomplish both goals requires some level of training and instruction to 

industry professionals, to ensure proper implementation and compliance to the 

established principles.  Failure to provide such training could result in the breakdown of 

the software assessment method and eventually its disregard as an industry tool.  Training 

could be easily accomplished through the use of periodical literature, published 

instruction, and academic incorporation. 

The process previously introduced in this study is still in its infancy; no more 

mature then the field of Software Engineering itself.  Such infancy encourages review 

and improvements to approach maturity.  The success of the assessment process demands 

the continued maturity of the method to ensure that a usable product can be generated 

across the widest variance of Software Engineering circumstances. 

The ability to customize and adapt the safety assessment is essential to guarantee 

the widest incorporation into the engineering field.  The concept of a safety assessment is 

                                                                                                                                                 
281  Institute of Electrical and Electronic Engineers. 
282  American Society of Civil Engineers. 
283  American Society of Mechanical Engineers. 
284  National Society of Professional Engineers. 
285  Defense Information Systems Agency. 
286  Defense Advanced Research Projects Agency. 
287  U.S. Nuclear Regulatory Commission. 
288  British Standards Institute. 
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not new to the engineering discipline, but additional emphasis is needed to incorporate 

the process into the field of Software Engineering.  Customization and adaptations can be 

accomplished so long as they do not detract from the functionality and ability of the 

assessment to provide a viable product.  The use of safety/failure libraries and archives 

would provide users with resources for generating usable thresholds and controls to better 

manage the engineering process and ensure a usable result.  Libraries could be exclusive 

to private organizations that have a sufficiently large development base to ensure some 

variety, or can be public in nature, fed by governmental, private, or academic entities 

with a common interest in increasing Software Safety and reducing the risk of hazardous 

events. 

Each of these topics is a viable subject for additional research and discussion 

beyond the scope of this dissertation. 

F. COMPLETENESS 

Completeness, in the form of a software assessment assumes that all of the 

potential roots of the system have been investigated and evaluated.  It is not necessarily 

implied that each root will be free of a defect, but that each root has been assigned a 

value of probability, and that probability and consequence are well understood.  Previous 

software development projects have revealed that poor granularity of metrics and 

measures did not reveal problems until they had already occurred.  A Software Safety 

Assessment is fruitless if a failure occurs that was not previously discovered or 

anticipated.  Each assessment and investigation must be thorough enough to completely 

discover every potential failure, in so much as resources permit. 

When resources limit the investigation of potential failures, emphasis can be put 

on roots of the system that hold the greatest consequence should a failure occur.  Where 

consequences are equal, emphasis can be put on roots where the probability of occurrence 

cannot be mitigated by the use of some control.  Completeness does not imply an 

absolute investigative coverage of the entire system, but rather the assurance that the 

system has been protected completely, as so far as resource and development permits.  If 
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one black box element of the system can be controlled and isolated, should an unknown 

error occur within its operation, and then isolation and control does not affect the 

continuous operation of the system as a whole, then the element can be considered safe.  

It should be cautioned that even a minor change to the system, especially the software, 

could result in a change to the system context that invalidates that assessment. 

Risks are not always identified or reported.  Even when metrics and measures are 

reported that showed risks, there may be no action by government or contractor to correct 

incipient problems.  The success of a Software Safety Assessment relies on a mechanism 

for feedback that affects the system product, the development / redevelopment process, 

and the extent to which system requirements were effected. 

The safety development process must be evaluated for the economic requirement 

and potential benefits of the application change.  The safety development process must be 

looked at as a change to the system, as it is designed to improve upon existing 

requirements and development shortfalls.  If the system requirements were correct and 

complete (from a safety perspective) at the onset of development, then safety changes 

would not be required.  Various metrics and scales have been developed to measure the 

required resources and effort necessary to make development changes. 289   Those 

estimations can then be verified at the completion of development.  Safety benefits are 

hypothetically based on an assumption of system functionality that can only be verified at 

the completion of an established goal, either in time or action. 

Controls must be evaluated for their potential benefit to Software Safety and 

failure prevention, as well as their effect on system performance and ability to meet 

developmental requirements.  The implementation of safety controls requires an 

evaluation of potential resource economics, the level of effort required to include the 

control, and the potential effect of the control upon the overall operation of the system.  

                                                                                                                                                 
289  Boehm, Barry; Clark, Bradford; Horowitz, Ellis; Madachy, Ray; Shelby, Richard; Westland, Chris; 

Cost Models for Future Software Lifecycle Processes: COCOMO 2.0, Annals of Software 
Engineering; 1995. 
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Completeness of the system must consider the effects of specific elements upon single 

requirements as well as upon the system as a whole. 

G. PERSPECTIVE CLIENTELE 

The safety assessment method introduced in this dissertation is applicable to a 

variety of Software Engineering ventures.  Primarily, the safety assessment would benefit 

the development and implementation of high–assurance software systems.  The extent of 

the safety assessment is not solely limited to high–assurance systems, but can serve to 

benefit the development of all systems that have the potential for a hazardous event.  

Predominately, resources are expended for safety assessments only on systems that 

require a high assumption of safety.  This particular method of safety assessing can be 

applied to any scale of Software Safety Engineering, from the most benign to the most 

precarious.  The potential client for such an assessment process spans a myriad of 

distinctions from private, to educational, to governmental organizations. 

The power generation field relies greatly upon high–assurance software systems 

to manage, control, and provide power to the general public.  The failure of a power 

generating system can potentially result in any of a number of hazardous events external 

to the power generator – to clients who rely on the power system.  The inability to control 

the power generating system could result in a catastrophic event internal to and external 

to the power generator – such as in the control systems to a nuclear power facility.  

Clients such as the public power generation field would greatly benefit from such a 

method and its ability to provide: 

• A valid safety assessment of the potential hazards of the system. 

• The ability to identify weaknesses and cost of potential mitigation controls. 

• The ability to inform and protect from potential hazards through the 

inspection and identification of safety–related system operation. 
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The world’s military superpowers insist on highly effective and technologically 

advanced weapons and defense systems capable of meeting the national objectives of 

their respective leaders.  The failure of such a technological weapon could result in the 

inability to meet expected goals and combative milestones.  The failure of a defensive 

system could leave allied forces vulnerable to attack and eventually susceptible to 

considerable troop losses.  With the reliance on technologically complex weapons to 

bring order and victory to the battlefield, it would be prudent for defense contractors and 

developers to utilize such a safety assessment process.  The results of such a process 

would provide military commanders with a realistic expectation of the success or failure 

of their weapons and defenses as well as the foresight to make compensatory alterations 

to their battle plans. 

The chemical industry has automated a considerable portion of their 

manufacturing process, using various high–assurance systems to ensure a superior quality 

of chemicals, biological agents, and pharmaceuticals.  Should the production of these 

chemicals fall outside of the delicate balance permitted in their nature, then the hazardous 

event could have cataclysmic results with worldwide consequences.  One could only 

imagine the impact of an inadvertent release of a biological agent or the tragic result of a 

chemical spill into a national waterway.  Private industry has an economic and moral 

interest in the success of their product.  Such a safety assessment would permit industry 

to protect, mitigate, and prepare for a hazardous event.  The ability to assess and measure 

the safety of a product gives industry the capacity best serve its clients and further 

guarantee the continued viability of their organization. 

Educational institutions serve as the bedrock for future development practices and 

standards introduction.  From this foundation, new engineers are instructed on the 

techniques and talents that will provide tomorrow’s solutions.  If the concept of Software 

Safety Assessments is established early in the educational process of future Software 

Engineers, then in the long term, the trend towards reviewing and measuring software for 

its  ability  to  prevent  or  participate  in  a  hazardous event can be recognized.  Formal  
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education is paramount towards the future success of Software Safety.  Assessment and 

measurement is the first in a series of process steps necessary for the security of software 

evolution. 

H. CONCLUSIONS 

The application of a Software Safety Assessment has been justified by its ability: 

• To support critical development and implementation decisions at 

milestone or other decision points. 

• To find the reasons for major problems such as cost overrun, schedule slip, 

inability to meet development requirements, the inclusion of potential 

faults, or a failure to pass a technical milestone such as testing. 

• To baseline the program status, identify and prioritize risks, and plan for 

improvements and risk management. 

o This kind of assessment is not in reaction to a crisis.  Its objective is to 

prevent problems by early recognition of risks and to identify 

opportunities to make improvements. 

• To investigate specific technical issues or evaluate technical products for 

their ability to control and prevent the occurrence of a hazardous event. 

• To determine how well successive series of development are capable of 

implementing a safe development.290 

The assessment process introduced in this dissertation is capable of establishing a 

basis for qualitative Software Safety.  The application of this assessment process can be 

accomplished with minimal overhead to existing spiral or repeating development 

processes.  The process does not limit itself to the development of a software system 



259 

alone, but includes the installation and employment processes as well.  From its inception, 

this stage-wise process was intended to meet each of the basis practices of a valid 

assessment.  As a first generation assessment process is will continue to grow and mature, 

compounded upon and refined by additional research and application. 

The use of this metric will require some changes to the methods for which 

software is designed and implemented.  These changes will include a greater obligation 

by management to ensure compliance to the assessment requirements.  Developers will 

be required to pay greater attention to potential mitigation controls necessary to reduce 

identified hazards.  Product customers will need to pay greater attention to the potential 

hazards of the product that they are about to implement and be prepared to take 

responsibility for those hazards that cannot be mitigated.  The burden for these 

requirements to management, developers, and customers should be minimal when 

compared effort required for the entire software system process. 

The process can be readily incorporated into existing software development 

projects or be adapted as necessary to be included into future ventures.  Benefits from the 

safety assessment can attained by both private, commercial, governmental and 

educational users.  Where possible; information, mechanics, and findings of the safety 

assessment process can be shared by various users to establish a baseline of safety data, 

ultimately improving the development and implementation of high–assurance systems. 

                                                                                                                                                 
290 Attributed to Clapp, Judith; The Best Practices - Forum on Independent Program Assessments, The 

MITRE Corporation; Bedford, Massachusetts; 05 December 2000. 
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VII. SOFTWARE DEVELOPMENT DECISIONS 

A. SOFTWARE NEGLIGENCE 

Software producers have an inherent responsibility to their customer to 

provide a product that is, to a reasonable degree; safe, free of defects, and meets the 

requirements agreed upon at the time of production. 

Under negligence law, software developers must not release a product that poses 

an unreasonable risk of personal injury or property damage to the customers or the 

general public.291  Negligence is defined as the “failure to exercise the degree of care 

expected of a person of ordinary prudence in like circumstances in protecting others from 

a foreseeable and unreasonable risk of harm in a particular situation.”292  To a great 

extent, most lawsuits over defective software are for breach of contract or fraud, partially 

because they did not involve or were caught before they could result in personal injury or 

property damage.  In the most unfortunate of circumstances, software’s failure causes 

such harm.  Personal injury could run the gambit from actual to presumed harm, be it 

physical or mental. 

It is possible for a customer or member of the general public injured by a software 

related event to sue a software provider or the developers for not taking reasonable 

measures to ensure the product was safe.  Reasonable measures are those actions that a 

reasonable, cautious provider or developer would take to protect the safety of its 

customers or the general public.  The common approach to determining the financial 

responsibility of the developer can be expressed legally by the cost–benefit equation 

expressed in Equation 4, from the formula by Judge Learned Hand in the case of United 

States v. Carroll Towing Co.293, 294 

                                                                                                                                                 
291  Kaner, C.; Software Negligence & Testing Coverage, Software QA Quarterly, Vol. 2, #2, p. 18; 1995. 
292  Negligence, Merriam-Webster's Dictionary of Law, Merriam-Webster, Incorporated; 1996. 
293 Federal Reporter, Second Series, vol. 159, pg. 169, United States Court of Appeals, 2nd Circuit; 1947. 
294  Landes, W.; Posner, R.; The Economic Structure of Tort Law, Harvard University Press; 1987. 
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B =  P x L 

 
Where B = The Burden or Expense of preventing the hazardous event. 
 L = The Severity of the Loss if the event were to occur. 
 P = The Probability of the Occurrence of an event. 

 

Equation 4 Legal Definition of the Cost–Benefit Equation 

It would be considered unreasonable for a software producer to develop a 

software product where the burden of production exceeds the severity and probability of 

a hazardous event.295  In a recent and highly publicized case, GTE Corp. mistakenly 

printed 40,000–50,000 unlisted residential phone numbers and addresses in 19 directories 

that were leased to telemarketers in communities between Santa Barbara and Huntington 

Beach.  GTE blames the problem on a software failure.  The company faced fines of up 

to $1.5 billion, if found guilty of gross negligence.  The case was resolved in 1998 in an 

undisclosed settlement. 296   Such a settlement would question if it would have been 

reasonable to expect GTE to pay $1.5 billion to compensate for such an incident, 

considering the fact that the injury to customers was an invasion of privacy and that a 

nuisance was created by telemarketers contacting their private phone numbers, or if it 

would have been more economical (or possible) to afford a lesser sum to mitigate the 

incident before it would have occurred through the development of a better software 

system.  In May of 2000, Pacific Bell published the names, numbers, and addresses of 

more than 11,400 unlisted Cox Communications telephone subscribers in San Diego.  

Cox Communications admits that it erroneously forwarded Pacific Bell the numbers, 

citing a software error.  Cox has since paid over $4.5 million to replace approximately 

440,000 phone books, as well as an undisclosed expense for new unlisted numbers and 

other compensation.297 

                                                                                                                                                 
295 Kaner, C; Quality Cost Analysis: Benefits and Risks, Software QA, vol. 3, num. 1, pg. 23; 1996. 
296  X Telecom Digest, Volume 18, Issue 60; 27 April 1998. 
297  Hammerman, Ted; Sparapani, Tim; “If I were them…”, Office.com; 26 July 2000. 
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The safety assessment method addressed in this dissertation would serve to 

compute the possible burden for such a hazard, either by identifying the effort to mitigate 

the hazard or the potential cost for such hazard to occur.  It would be reasonably expected 

that a prudent developer would make such an assessment to: 

1. Determine / Identify the functionality of his system, 

2. Identify the weaknesses within the operation of the system, 

3. Determine the potential occurrences of hazardous events within the 

system’s operation, 

4. Justify the efforts required to mitigate such events, 

5. Determine if additional efforts are required to meet product functional and 

safety requirements, and 

6. Legally protect the developer from potential suit should a hazardous event 

arise by demonstrating sufficient precaution and investigation of system 

operation. 

Should an unexpected hazard occur, a properly executed safety assessment with 

the appropriate documentation would protect the investment by demonstrating that 

sufficient effort was expended to find all reasonable hazards. 

B. SOFTWARE MALPRACTICE 

Malpractice infers that an individual has provided a service below that which 

would have been reasonably expected by a respective member of the professional 

community, resulting in injury or loss.298  Article 2B of the Uniform Commercial Code 

defines the requirements for malpractice within the software field.299, 300  The expectation 

                                                                                                                                                 
298  Malpractice, Merriam-Webster's Dictionary of Law, Merriam-Webster, Incorporated; 1996. 
299  Uniform Commercial Code Article 2B Revision Home Page; http://www.law.uh.edu/ucc2b. 
300  Kaner, C; Quality Cost Analysis: Benefits and Risks, Software QA, vol. 3, num. 1, pg. 23; 1996. 
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of quality of a production of software is no different than the threshold that may be held 

for a medical device, legal service, or building construction.  Instead of a hard medium of 

production, the software industry generates a soft product that can still have catastrophic 

results if improperly developed, employed, or terminated.  Should a developer promise 

working code and deliver garbage, the developer may be liable for breach of contract.  

Should the developer convey that he is capable of delivering a specific type of application 

but have no real experience, then the developer could be liable for misrepresentation. 

In a malpractice case, the level of care provided would be compared against that 

expected from a comparable professional software developer.  Software developers may 

be judged against a standard agreed upon within the contract, requirements, or by the 

assumption given to the type of work under development.  If the product does not meet 

the requirements and it would be reasonably expected for a professional to follow 

standards required to guarantee such results, then a measure of liability would be in force.  

Software development does not have a general standard that covers the measurement and 

assessment of high–assurance systems.  Numerous safety standards exist which are 

proprietary to specific companies, development groups, and governmental organizations.  

Malpractice requires some level basis of standard to assess liability. 

There currently exists no standardized format for reviewing, evaluating, and 

rating a software system for its potential harm to society.  Through this study, I introduce 

a possible format for certifying a software product to some accepted threshold of safety, 

based on an established criteria.301 

C. NEGLIGENT CERTIFICATION 

It is intended that the Software Safety Assessment process introduced in this 

dissertation be used as a basis for the accreditation and certification of future high–

assurance systems.  Should this or any safety assessment process be deemed as a viable 

method to meet the demands of safety engineering, the chosen method may be legally 

                                                                                                                                                 
301  See Chapter V.E.3 – Assessing the System Process. 
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challenged and found potentially liable should an evaluated system fail.  The general 

public might expect that an assessment process would identify all potential failure 

method and hazards, as well as provide alternatives for their mitigation and control.  In 

reality, the assessment process can only identify faults that fall within the scope of the 

assessment and in particular, within the ability for the assessor to identify. 

The assessment process in this dissertation does not imply endorsement to any 

product, nor does it state absolutely that the product will not experience a hazardous 

event.  What the assessment process does is provide a method for developers and 

managers to view a product with an eye towards potential failures, introducing methods 

for their mitigation and control.  The assessment process is designed to be straightforward 

and as stepwise as possible, easily integrating into existing development practices.  The 

burden still remains with the developer to ensure that proper practices are in place to 

ensure a viable assessment product and that assessment recommendations are acted upon. 

An extensive search of legal papers and industry press releases have revealed no 

history of filings against software developers for the violation or manipulation of 

software certifications.  Despite the fact, there remains the potential for future systems to 

be challenged for misrepresenting their results against any such certification, or outright 

pose a legal challenge against the certification method itself for failing to prevent any 

hazardous event. 

D. SAFETY ECONOMICS 

As noted in Chapter I of this dissertation, over $250 Billion is spent on software 

development annually.  A sizeable percentage of that investment is lost due to failures in 

software design, process engineering, and cancelled projects.  There is no accurate value 

for the amount of money lost due to software related failure but, again, experts put the 

value into the billions of dollars annually.  Many of the failures result in the mere “nickel 

and dime” incidents, but the breadth of these failures results in a compounded sum that 

should force others to take notice.  News accounts publicize only the most spectacular 

incidents that result in significant losses and dramatic effects.  Tragically, the failure of 
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some systems results in the harm to, or loss of life of, another human being.  It is the 

combination of these three (Compounded sum of failures; Poor industry publicity of 

software failures; The potential injury to or loss of human life) that must justify the 

efforts of a Software Safety Assessment. 

Customers are a highly impressionable public. 

Customers are quickly affected by bad publicity and implied confidence.  They 

can be swayed by colorful advertisement, statistics, and personalized attention.  

Customers will shy away from events or products that could place them in a bad light, be 

labeled “politically incorrect,” or place them in a perceived jeopardy of offending their 

own customer base.  Should a software product or developer demonstrate a history or 

pattern of failures over a given period of time or be related to a single high–profile failure 

event, customers may withdraw their interest until such time as a stable product becomes 

available.  In the meantime, customers would turn to alternative in–house solutions, to a 

third party provider, or discontinue the requirement for such product altogether.  In some 

cases, customers may turn to a competitor’s product with sufficient investment as to not 

economically justify reverting back when a stable product is finally offered.  Software 

systems are optimally updated about every twelve to eighteen months, making the 

window for change or reinvestment ripe for transition to alternative products.  The failure 

of any one system today could result in the loss of business tomorrow. 

From a legal standpoint, should the cost of potential litigation, compensatory 

damage, and punitive damage for a specific hazardous occurrence exceed the cost for 

which it would take to fix the known failure, then it would be justified to resolve the 

problem.  The failure to sufficiently test the product could place the developer in 

jeopardy of a negligence lawsuit for not reasonably testing the system.  The failure to 

repair an identified failure could place the developer in jeopardy of a negligence lawsuit 

for not reasonably making the system safe.  Should it not be cost effective (the potential 

burden of a hazardous event is less that the cost of preventing the event) then the 

developer may justify not mitigating a specific hazardous event.  It should be emphasized, 
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that intentionally leaving a known hazard in the system could make the developer liable 

under malicious circumstances, possibly compounding legal judgments. 

From a moral standpoint, software developers have an ethical requirement to 

provide the most reliable software product to the consumer with the least potential for a 

hazardous event.  Various software development standard bodies, such as IEEE, and the 

British and Australian Computer Societies have agreed on independent sets of bylaws 

outlying the moral and ethical requirements for software development, namely that: 

• Members will approve software only if they have a well–founded belief 

that it is safe, meets specifications, passes appropriate tests, and does not 

diminish quality of life, diminish privacy, or harm the environment.  The 

ultimate effect of the work should be to the public good,302 

• Members shall in their professional practice safeguard public health and 

safety and have regard to protection of the environment,303 and 

• Members must protect and promote the health and safety of those affected 

by the product provided. 304 

The adherence to and acceptance of these basic principles of ethics places a 

potential economic burden upon the software provider.  While this burden of training and 

adherence may be significant, the potential rewards of producing a product that provides 

for the “safety and welfare of the public” 305  could be the increased revenue from 

additional contracts and devoted customer base. 

                                                                                                                                                 
302  Software Engineering Code of Ethics and Professional Practice, IEEE-CS/ACM Joint Task Force on 

Software Engineering Ethics and Professional Practices, SEEPP Executive Committee; 1998. 
303  British Computer Society Code of Conduct, The British Computer Society, London, England; 22 April 

1992. 
304  Australian Computer Society Code of Ethics, Australian Computer Society; 1999. 
305  Software Engineering Code of Ethics and Professional Practice, IEEE-CS/ACM Joint Task Force on 

Software Engineering Ethics and Professional Practices, SEEPP Executive Committee; 1998. 
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E. CONCLUSION 

There can be little doubt that the hazardous failure of a software system would 

result in an expensive penalty to the developer, the client, and potentially the general 

public.  The legal ramifications of a software failure could range from the civil penalty to 

incarceration.  It is imperative that software systems be designed with the consequential 

understanding that failure could result in the downfall of the developers who were tasked 

with the construction of the system.  To this end, the inclusion of a Software Safety 

Assessment demonstrates an additional level of competence and security, limiting the 

potential for legal action in cases of negligence or malpractice in software development. 

It is possible to estimate the cost of development through any of a myriad of 

development assessment tools, while the incorporation of a Software Safety Assessment 

would add an additional layer of change assessment, should change be warranted, or to 

hazard cost, should a hazardous event be identified.  The economic ramifications of such 

an event could be determined throughout the development process, leading to the ability 

to redirect assets and efforts to ensure beneficial product.  The benefits of a Software 

Safety Assessment can be measured in terms of the hazards for which it identifies or 

prevents, or for the financial assets that it saves through the prevention of such events. 
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VIII. SUMMARY AND CONCLUSIONS 

Software Safety is not based on a new development method, but rather the 

refinement and application of existing methods of development. 

As industry and governments increasingly place the management of critical 

operations under the control of software–based systems, the potential and severity for a 

hazardous event increases.  Software based systems exercise a predominant automated 

control over the United States military command and control network and defense 

systems, as well the control and functionality of today’s sophisticated weaponry.  

Software is used to control and manage civil utilities, public communications, industry 

trading, and the commercial food supply.  Medicine, transportation, and the public food 

supply are all manipulated to some degree by software automation.  The extensive 

reliance upon such systems consequently results in an increased probability for 

significant economic loss or physical injury to those in contact with the system should 

they fail. 

While it is difficult to render a software system completely devoid of any 

potential failure, it is possible to identify, classify, and potentially mitigate failures and 

hazardous events within a software system.  From that effort, it is possible to establish a 

safety index to gauge the safety of a system against unwanted events.  Through this study, 

I introduce a formal Software Safety Assessment method for deriving a quantitative and 

qualitative safety value for system operation.  This approach utilizes a series of accepted 

development methods for determining equitable values of system’s operations and 

management, combined to generate a unique perspective of high–assurance software 

operation. 

There currently exists no publicly accepted method for determining a safety index 

of software systems.  While a variety of private methods may exist, the proprietary and 

specific nature of these methods makes them unacceptable for use as a general safety 

assessment method.  The method introduced in this dissertation builds upon the 
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philosophical foundation of legacy methods to establish a generalized method that can be 

tailored to meet the specific need of each development scenario. 

There is no “Silver Bullet” 306  to prevent the occurrence of all failures and 

hazardous events within a software system, but the identification of the potential 

occurrence increases system safety through awareness and recognition.  The primary 

benefit of this dissertation is the introduction of a method of system safety awareness 

through operational analysis.  Many systems sputter and hesitate under the burden of 

excessive development review – essentially “Paralysis by Analysis.”  Through the 

presentation of this study, I provide a method for reviewing and assessing the operation 

of the system with minimal encumbrance, essentially taking place in series with the 

existing development process. 

QUESTION:  Is it possible to develop a common assessment criterion that 

can determine if software is safe? 

ANSWER: YES.  Through the stepwise process introduced in this dissertation,307 

it is possible to make an assessment of the developed product to determine the level of 

safety of a software system.308  The stepwise process is broken down into incremental 

stages that guide the evaluation through the establishment of safety thresholds, the 

identification of malfunctions and hazards, and ultimately the assessment of the system.  

From that assessment, it is possible to assign a safety measure to the software 

development.   

                                                                                                                                                 
306  Brooks, Frederick P., Jr.; No Silver Bullet, Essence and Accidents of Software Engineering, Computer 

Magazine; April 1987. 
307  See Chapter 0 – 11. PROCESS PROCEDURES. 
308  See Chapter V – DEVELOPING THE MODEL. 
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A. CONTRIBUTIONS 

The primary contribution of this dissertation to the state of the art of Software 

Engineering is the formalization of a method and metric to incorporate Software Safety 

into the development process.309  A significant contribution of this dissertation is the 

formal study and research in the under–represented field of Software Safety.  This formal 

model directly impacts and improves the state of the art by refining current methods of 

development to better identify unsafe practices and methodologies through the software 

lifecycle that could lead to failure.  The success of this software development 

methodology is the increased awareness of safety in high–assurance software systems, 

the reduction of risk through the software lifecycle, with corresponding increases in 

efficiency, decreases in overall software system costs, and a decrease in occurrence of 

hazards in a software system.  The introduced method builds upon the established 

practices of the MOD 00–56 UK Safety Standard and MIL–STD–882D, combined with 

the principles of risk / safety assessments, the principles of statistics and mathematics, 

and the design flow aspects of the Boehm Spiral Method.  Specific contributions within 

this dissertation include safety definitions, the Software Safety metric, and additional 

process improvements. 

1. Six Factors of Safety Failure 
This study and dissertation is based on correcting the six inhibiting factors to 

Software Safety success, introduced in Chapter II.C, namely: 

• A failure to realize that there is a problem with the current state of 

Software Safety, 

• A failure to recognize potentially unsafe circumstances in software 

systems, 

• A failure to identify the flaws of the Software Development Process, 

• An inability to quantify flaws, faults, and failures into a measurable value, 

                                                                                                                                                 
309  See Chapter V – DEVELOPING THE MODEL and Chapter VI - APPLICATION OF THE FORMAL 

METHOD FOR EVALUATION OF SOFTWARE SYSTEMS. 
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• An inability to qualify the solutions to potential flaws for evaluation and 

efficient rectification, and 

• A failure to comprehend the solution to Software Failure. 

These six factors are derived from a review of prominent and available literature 

regarding the failures of past products and systems, as well as a commonsensical 

approach to failure in general.  

2. Definitions 
The current state of the art of software development is littered with proprietary 

terminology that limits the establishment of an engineering standard.  To provide a 

benchmark for safety standards terminology which I have introduced: 

• An improved series of definitions to delineate failure types, 

• New definitions for degrees of software failure semantics, and 

• New definitions to delineate the severity of failure. 

These series of definitions describe the aspects of Software Engineering with an 

emphasized view towards Software Safety and process improvement.  A consolidated list 

of applicable safety definitions are included in APPENDIX A of this dissertation, 

including second and third party definitions related to this dissertation.  Where possible 

and appropriate, a comparison and contrast of existing definitions is included throughout 

this dissertation to demonstrate the improvement process within this document over 

existing state of the art definitions.310  This series is in no way complete and affords itself 

to continued improvement and refinement in future research. 

                                                                                                                                                 
310  See Chapter II.G.1 – Comparisons of Safety Definitions. 
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3. Metric 
Key contributions of this dissertation to the state of the art of Software 

Engineering are the introduction of a common metric for evaluating software and the 

development process to qualitatively and quantitatively determine a safety index of a 

particular software system.  The ability of the developer to create a baseline scale to 

judge the software system against permits a degree of flexibility and adaptability beyond 

that found in legacy assessments.  The resulting assessment value can then be evaluated 

against potential hazards and faults to determine the cost–benefit ratio of efforts to 

remedy or prevent the hazard.  The introduced metric is defined and demonstrated 

throughout Chapter V of this dissertation.  A synopsis of the process procedures is 

reviewed in 0 at the conclusion of this dissertation. 

The introduction in this dissertation of the Safety Assessment Index (SAI)311 

gives Software Engineers a snap shot result of a software system’s safety based on a 

tailored assessment process.  The ability to evaluate and relate system hazard probability 

and hazard severity to system operation increases the capacity of software developers to 

make decisions beneficial to system safety.  No such index was discovered during the 

investigation phase of this dissertation, and the inclusion of one such would markedly 

increase development comprehension and efficiency. 

4. Process Improvement 
The incorporation of the preceding Software Safety Assessment method results in 

an improved efficiency to the software development process.  This process improvement 

includes a review of Software Safety economics and the cost / benefits of safety 

development over existing methods.  The introduction of a Safety Element to 

Requirement Level Assignment provides a common foundation for software developers 

to build a requirement specification upon.  From this foundation, developers can produce 

a system with safety as the intent, prepared for the incorporation of a cyclical safety 

assessment.  Proper safety assessments can reduce repetitive design and developments 

through the early identification of hazardous and unwanted modules.  Malicious portions 
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of the system can be removed or repaired to ensure an optimal operation of the system 

through the use of limited resources and time.  The safety assessment, designed to be 

incorporated in parallel with the development process, can provide timely updates to the 

development, tracking each change, empowering the developer with better decision 

making abilities.  The economic impact of the assessment is dependent on the level of 

process improvement, the failures prevented and hazards averted, and the legal 

protections received through the use of a standardized safety assessment process. 

5. Contributing Benefits 
No assessment process will directly make a software system safer.  That is not the 

intention of an assessment process.  An assessment process is designed to evaluate and 

present a measure of a system’s operation and design based on established criteria for 

further decision–making.  It is with this data that the user can then determine if or what 

actions he should take to meet respective goals for system safety.  It is intended that, with 

the assessment process, developers can evaluate a software system, identify potential 

weaknesses, measure the required assets necessary to compensate for the weakness, and 

then determine the potential benefit from the compensation.  If the compensation is cost–

worthy, then the determination can be made to enact the change, thereby making the 

system “safer.”  A determination to make a system safe must be based on a sound 

assessment of the system against an accepted threshold, a review of the costs and benefits, 

and the ability to make the required changes. 

This dissertation, its study, and introduced methods are intended to improve the 

process of Software Engineering to provide a quantitative and qualitative assessment of a 

software product’s operation.  When applied, this software process has the potential of 

increasing the efficiency of software development by eliminating repetitive development 

efforts and flaws that can be identified early in the software process.  Where possible, the 

software assessment can increase productivity through the use of standardized processes 

that can be related to existing methods and projects. 

                                                                                                                                                 
311  See Chapter V.B. – THE INSTANTIATED ACTIVITY MODEL 
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B. CHANGES TO LEGAL PROTECTIONS 

As quoted earlier in this dissertation, “Doing software risk management makes 

good sense, but talking about it can expose you to legal liabilities.  If a software product 

fails, the existence of a formal risk plan that acknowledges the possibility of such a 

failure could complicate and even compromise the producer’s legal position.”312  The 

atmosphere in which software is developed is ripe for legal challenges when events occur 

that jeopardize public safety or economics.  Software Engineers must feel protected 

within their development to create a system that has the potential to cause a hazardous 

event, but accredited to be safe through the use of an accepted assessment method.  A 

failure to protect software developers from legal challenges could result in the stifling of 

creative knowledge.  Developers need the freedom to develop with the assurance of some 

level of protection, as long as they follow a standardized process, openly identify the 

potential for hazardous events, and permit peer review of the final product.  Should the 

process and concepts brought forward in this dissertation be accepted as a standardized 

process for assessing the safety of a software system, it would afford some level of 

protection to developers against malpractice and negligence. 

C. MANAGEMENT 

Improvements to Software Safety require a definitive change to management and 

business practices.  The current state of development does not properly assure the 

identification, assessment, and rectification of software hazards.  The proprietary nature 

of the art does not permit broad based acceptance of assessment results, nor does it permit 

the transfer of lessons learned from Software Safety improvement methods.  The success 

of Software Safety requires management to create an atmosphere where safety is not an 

end goal of development, but rather an integral part of the development and integration 

process.  Each phase of development must be tailored towards improving the system’s 

performance with periodic assessments that can quickly identify hazards, propose 

                                                                                                                                                 
312  Boehm, B; De Marco, T; Software Risk Management, IEEE Software, Institute of Electrical and 

Electronics Engineers, Inc.; May – June, 1997. 
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corrective measures and controls, and increase the understanding of system capabilities, 

while not inhibiting the overall development process, possibly increasing the efficiency 

of the development. 

The methods proposed within this dissertation will directly impact the fashion in 

which software is developed.  Every practice must be scrutinized for completeness and 

compliance with safe development practices.  The concept of Software Safety Assurance 

can be offensive to some, as it will criticize and critique previously accepted methods of 

software development.  Software development managers must be prepared to amend their 

development philosophies to better integrate the principles of safety development. 

D. HANDLING FRAGILITY 

Software is fragile.  Its logic is derived from a Boolean decision process in which 

every event must be placed into a true or false statement.  If a statement can be written 

with sufficient detail, it becomes possible to articulate compound thought.  As events 

become more complex and the systems for which they control become unstable, the 

possibility for failure increases.  It is these measures of intricacy, instability, failure 

probability, control, and mitigation that form a root of Software Safety.  The 

identification, control, and improvement of these values are paramount to improving the 

quality of a software system.  To assess these values developers and managers need a 

standardized assessment process, tailored to meet the needs of specific needs of a varied 

range of systems. 

Software Safety is not the removal of all unsafe events within a system.  It is not 

the counting of code to determine safety verses length.  Complexity is not an isolated 

measure of safety, nor is change, nor is risk a measure of safety.  Safety is the measure of 

a system’s ability to prevent a hazardous event.  Where a system is unable to prevent 

such an event, it is the measure of the mitigation of that event. 

The metric and methods in this dissertation and study are designed to improve the 

state of the art of software development without imposing an overwhelming burden on 

existing development efforts.  Software, in its fragility necessitates an assessment process 



277 

capable of identifying, categorizing, measuring, and improving its operation and 

establishing some factor of safety.  That measure and vocabulary are the intention of this 

dissertation. 

E. SUGGESTIONS FOR FUTURE WORK 

This dissertation serves as an introduction to a possible standardized method for 

assessing the safety of a software system.  The methods and procedures introduced in this 

dissertation are based on the theoretical combination of existing methods and procedures, 

tailored to meet the specific needs of software based systems.  Examples presented in this 

dissertation are theoretical applications of the method against a hypothetical system.  

Future work could include the application of the assessment process against an actual 

software system, judged for its ability to accurately depict the fragilities of a system, to 

assist in the decision making process to correct identified events, and the potential 

efficiency savings through the use of the assessment process. 

Once an assessment has identified specific elements of a system that warrant 

improvement, the developers must determine the methods that would most optimally 

enhance the process.  In this dissertation, I introduce a method for assessing the existing 

development.  Due to the scope of this dissertation, I have omitted specific methods for 

modifying corresponding requirements, designs, and code to mitigate identified hazards.  

Research and development into methods of process improvement would benefit the field 

of Software Safety and Software Engineering. 

One key to the success of the Software Safety Assessment is the ability to identify 

potential hazards.  Additional research is necessary to aid in the development of methods 

for eliciting safety requirements and system safety constraints.  Eliciting safety 

requirements and constraints is predicated on being able to identify the potential hazards 

and the related causal factors.  The success of the assessment is found in the ability to 

prevent a hazardous event, consequently saving valuable resources.  If the assessment 

relies on impractical or inefficient methods for identifying requirement and hazards, then 

it could become uneconomical to investigate and identify extremely rare events.  
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Research should include methods for estimating reliability and boundaries of historical 

events that might indicate the existence of unforeseen events not identified thorough 

traditional methods. 

In the perfect system, the Probability of Failure would be Zero (Pf = 0), to say that 

the system would never fail.  In a realistic system, there most likely exists some 

probability that the system will fail in one form or another (0 ≤ Pf ≤ 1).  Unanticipated 

states frequently result in failures that the developers did not anticipate.  A benefit to the 

state of the art and the Software Engineering community would be the development of a 

method for characterizing the distribution of expected inputs to the software and their 

effect.  The measure should be designed to encompass the bounds of each input and the 

variations and potential states of the system. 

The tradeoff between financial cost and human injury will always be controversial.  

In its complexity, a software system has the potential to result in hazardous consequences 

in terms of both economic and personal injury.  The current process combines the two 

factors into a single assessment.  Future research and process improvement can foster 

changes to the safety assessment to include a partially ordered two–dimensional scale for 

consequences of a Hazard based on cost and injury. 

It is essential that archived assessment results be compared against the actual 

performance of deployed systems.  Research and development should be accomplished to 

foster an empirical measurement or comparison of predicted failure data to actual failures.  

The comparison of predicted versus actual performance can be used to calibrate the 

model and method to provide a more accurate future assessment.  Based on these 

performance and evaluation trends, it would also be possible to specify an expected loss 

for a specific failure rate and safety index. 

As the assessment process is refined and incorporated, it should be submitted for 

critical review through field literature and accrediting organizations.  The submission 

process requires a significant degree of preparation and “suitcasing.”  Future efforts can 

be placed at validating the assessment process, refining it for submission, and then 
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putting forward a proposal for accreditation as a standard in national, international, and 

governmental organizations. 

Definitions proposed within this dissertation are intended as a guide for properly 

understanding the intricate facets of software development and safety.  Future efforts can 

be concentrated at refining proposed definitions for submission as accepted 

characterization of a Software Safety Assurance Process. 

The ability to automate the software development process has greatly increased 

Software Engineering efficiency and reduced the overall management burden.  Future 

efforts can be placed at developing an automated process that would integrate the 

concepts of Software Safety, tailored measurement baselines, and assessments.  Reports 

and presentations could be standardized within the automated process using actual and 

forecasted data. 

This dissertation makes a brief approach at addressing safety design requirements 

and their incorporation into the software development process.  Specifically addressed 

topics included Software Requirements Hazard Analysis in Chapter II.E.2.c and 

Requirements Trends Toward Failure in Chapter III.C.  There exists a need to conduct 

greater research and formalization of safety design requirements and their incorporation 

into the software development process.  The incorporation of a standardized formal 

language for specifying safety attributes would have an immediate impact on the state of 

the art of Software Safety.   

Briefly discussed in this dissertation are methods for determining the probability 

of a specific action, be it the probability of execution or the probability of failure of an 

event.  Existing software reliability metrics do not provide a verifiable or consistent 

means for quantifying the probability of failure of a specific process within a software 

system.  To this end, there exists a need to conduct greater research and formalization of 

methods for determining the probability of software event failure.  Such research should 

be based on an analysis of elements as identified in Table 1 (Quantitative and Qualitative 

Factors of Safety) of this dissertation.   
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APPENDIX A. DEFINITION OF TERMS 

Acceptable Level of Risk:  (a)  A judicious and carefully considered assessment by the 
appropriate authority that a computing activity or network meets the minimum 
requirements of applicable security directives. The assessment should take into 
account the value of assets; threats and vulnerabilities; counter measures and 
operational requirements. [DISA/D2, 1999], [AFSEC] 

 
(b) As it applies to safety, threshold determination of exposure to the chance of injury 
or loss. It is a threshold of the function of the possible frequency of occurrence of the 
undesired event, of the potential severity of resulting consequences, and of the 
uncertainties associated with the frequency and severity.  [NASA, 1996] 
 

Action Based Failures:  Failures associated with an internal fault and associated 
triggering actions.  Action Based Failures contain logic or software–based faults that 
can remain dormant until initiated by a single or series of triggering actions or events.  
[Williamson – Page 49] 

 
Active Software Safety System:  A software system that directly controls some 

hazardous function or safety–critical system operation, to ensure that the operation of 
that system remains within some acceptable bound.  [Williamson – Page 121] 

 
Benign Failure:  A failure whose severity is slights enough to be outweighed by the 

advantages to be gained by normal use of the system.  [Nesi, 1999] 
 
Capability maturity model, CMM:  A five–layer model against which an industry can 

evaluate its organizational maturity with respect to software development.  The levels 
are 1: Initial, 2: Repeatable, 3: Defined, 4: Managed and 5: Optimizing.  [SEI-93-TR-
24]   

 
Cataclysmic Failure:  A sudden failure that results in a complete inability to perform all 

required functions of an item, referring both to the rate in which the system failed, 
and to the severity degree of the Mishap that resulted from the failure.  [Williamson – 
Page 60] 

 
Code and fix:  A simple approach for program developing based on which of the 

programmers write the code, test and fix the found errors without following a 
formalized development life–cycle.  [Nesi, 1999] 

 
Complete Failure:  A failure that results in the system’s inability to perform any 

required functions.  [Williamson – Page 60], [Nesi, 1999] 
 
Complexity:  A measure of how complicated an element (typically of code or design) is.  

It represents how complex it is to understand (although this also involves cognitive 
features of the person doing the understanding) and/or how complex is to execute the 
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code (for instance, the computational complexity).  The complexity evaluation can be 
performed by considering the computational complexity of the functional part of the 
system –– i.e., the dominant instructions in the most iterative parts of the system.  The 
complexity may be also a measure of the amount of memory used or the time spent in 
execution an algorithm.  [Nesi, 1999] 

 
Compliance:  The capability of the software product to adhere to standards, conventions 

or regulations in laws, and similar prescriptions.  It is a sub–feature of functionality.  
[Nesi, 1999] 

 
Comprehensibility:  Synonymous of understandability.  The capability of a software 

system to include a set of functionalities.  [Nesi, 1999] 
 
Concept/Conceptual:  The period of time in the software development cycle during 

which the user needs are described and evaluated through documentation (for 
example, statement of needs, advance planning report, project initiation memo, 
feasibility studies, system definition, documentation, regulations, procedures, or 
policies relevant to the project).  [IEEE 1991] 

 
Consequence Severity:  The magnitude of severity related to the consequence of a 

hazardous event.  Consequence Severity can be defined as a graduated list of terms 
and expressions, as an ordinal list of increasing magnitude, or as pure values 
representing the monetary cost of the hazard.  [Williamson – Page 150] 

 
Constructive Cost Model, COCOMO:  A method for evaluating the cost of a software 

package proposed by Dr. Barry Boehm.  There are a number of different types: The 
Basic COCOMO Model estimates the effort required to develop software in three 
modes of development (Organic Mode, Semidetached Mode, or Embedded Mode).  
The Intermediate COCOMO Model an extension of the Basic COCOMO model.  The 
Intermediate model uses an Effort Adjustment Factor (EAF) and slightly different 
coefficients for the effort equation than the Basic model.  The Intermediate model 
also allows the system to be divided and estimated in components.  The Detailed 
COCOMO Model differs from the Intermediate COCOMO model in that it uses effort 
multipliers for each phase of the project.  [Nesi, 1999] 

 
Continuous Improvement:  The process of tuning the software development process in 

order to achieve better results in the future versions.  The improvement is based on 
the assessment of the systems development and in performing corresponding actions 
for correcting problems and improving the general process behavior.  [Nesi, 1999] 

 
Control:  System objects capable of preventing or mitigating the effects of a system 

malfunction should a failure occur.  Controls may consist of any of a number of filters, 
redundant operators, or other hardware or software objects depending on the 
architecture of the system and control that is to be employed.  A control may be able 
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to filter unacceptable values and triggers before contacting a fault, preventing the 
occurrence of a failure.  [Williamson – Page 211] 

 
Cost Estimation:  In the early stages of a software project, some estimate of the total 

cost, overall effort required and, hence, personnel requirement (and other resources) 
is needed.  Cost estimation describes a suite of techniques that take early artifacts of 
the software development process and, from these, calculate a first estimate of overall 
cost.  COCOMO and Function Points are two cost estimation models used in a 
traditional development.  [Nesi, 1999] 

 
Cost Of Failure:  A measure of the severity of the consequences of failure.  Depending 

on the type of system, different scales may be used e.g., duration of down time, 
consequential cash loss, number of lives lost, etc.  Cost of failure to user must be 
distinguished from cost of maintenance to vendor.  [Nesi, 1999] 

 
Cost/benefit analysis:  The analysis of benefits and costs related to the implementation 

of a product.  [Nesi, 1999] 
 
Critical Design Review (CDR):  A review conducted to verify that the detailed design of 

one or more configuration items satisfy specified requirements; to establish the 
compatibility among configuration items and other items of equipment, facilities, 
software, and personnel; to assess risk areas for each configuration item; and, as 
applicable, to assess the results of the producibility analyses, review preliminary 
hardware product specifications, evaluate preliminary test planning, and evaluate the 
adequacy of preliminary operation and support documents. (IEEE Standard 610.12–
1990)  For Computer Software Configuration Items (CSCIs), this review will focus 
on the determination of the acceptability of the detailed design, performance, and test 
characteristics of the design solution, and on the adequacy of the operation and 
support documents.  [IEEE 1991] 

 
Critical Path:  The set of activities that must be completed in sequence and on time to 

have the entire project being completed on time.  Related to PERT charts.  [Nesi, 
1999] 

 
Critical Software:  A software for which the safety is strongly relevant and its failure 

could produce damages for the users.  See real time system, critical task, and critical 
system.  [Nesi, 1999] 

 
Critical System:  A system that possesses a critical (or safety–critical) mode of failure 

that could have impact on safety or on economic aspects.  For example, critical on–
board avionics systems are defined as those that, if they fail, will prevent the 
continued safe flight and landing of the aircraft (e.g., those responsible for pitch 
control).  [Nesi, 1999] 
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Criticality:  Classification of the consequences, or likely consequences, of a failure mode, 
or classification of the importance of a component for the required service of an item.  
See severity.  [Nesi, 1999] 

 
Deadlock:  A situation in which computer processing is suspended because two or more 

devices or processes are each awaiting resources assigned to the other.  (IEEE 
Standard 610.12–1990) 

 
Decomposition:  The process of creating a program in terms of its components by 

starting from a high–level description and defining components and their 
relationships.  The process start from the highest level to reach the definition of the 
smallest system components and their relationships, passing through several 
intermediate structural abstractions.  [Nesi, 1999] 

 
Defect:  Non–fulfillment of an intended usage requirement, or reasonable expectation, 

including one concerned with safety.  A non–conformance between the input products 
and the output products of a system development phase.  The main purpose of 
verification activities (e.g., inspection) is to detect defects so that they can be 
corrected before subsequent development phases.  If not detected and corrected 
during development, defects may give rise to one or more faults in the delivered 
system, and hence to failure in operation.  Some defects (e.g., inappropriate 
comments in source code) cannot give rise to faults, but may adversely affect 
maintainability or other quality characteristics.  [Nesi, 1999] 

 
Effort to Develop:  A measure of the effort required to build the software system, 

measured in man–hours, man–months, or processor–hours.  Effort is a factor of the 
time to develop verses the number of persons/assets required for the development 
period, compounded by the complexity of the system and aptitude of the resources.  
Safety is directly affected by the complexity of the system and aptitude of the 
resources, and indirectly affected by the time required to develop.  [Williamson – 
Page 138] 

 
External Failure:  An undesirable event in the environment that adversely affects the 

operation of an item.  [Nesi, 1999] 
 
Failsafe:  An item is said failsafe when, following detection of a hazardous state, a 

mishap can be avoided despite a possible loss of service.  The possibility of designing 
an item to "failsafe" obviously depends on its having a safe mode of failure.  [Nesi, 
1999] 

 
Fail Soft:  The condition of a system that continue to provide main functionalities even 

in the presence of some failure.  [Nesi, 1999] 
 
Failure:  (a) The inability of a computer system to perform its functional requirements, 

or the departure of software from its intended behavior as specified in the 
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requirements.  A failure is an event in time.  A failure may be due to a physical failure 
of a hardware component, to activation of a latent design fault, or to an external 
failure.  Following a failure, an item may recover and resume its required service after 
a break, partially recover and continue to provide some of its required functions (fail 
degraded) or it may remain down (complete failure) until repaired.  [Nesi, 1999] 

 
(b) The inability of a system or component to perform its required functions within 
specified performance requirements.  (IEEE Standard 610.12–1990) 

 
Failure Tolerance:  The ability of a system or subsystem to perform its function(s) or 

maintain control of a hazard in the presence of failures within its hardware, firmware, 
or software.  [IEEE 1991] 

 
Firmware:  Computer programs and data loaded in a class of memory that cannot be 

dynamically modified by the computer during processing.  [IEEE 1991] 
 
Fault:  A system object that contains an error in logic, that when triggered, could induce 

a failure in system operation.  A fault can potentially reside in the system indefinitely 
without ever inducing a failure, lacking the existence of an appropriate trigger.  
[Williamson – Page 44] 

 
Fault Detection:  A process that discovers or is designed to discover faults; the process 

of determining that a fault has occurred.  [IEEE 1991] 
 
Fault Isolation:  The process of determining the location or source of a fault.  [IEEE 

1991] 
 
Fault Masking:  A condition in which the occurrence of a fault is masked.  [Nesi, 1999] 
 
Fault Recovery:  A process of elimination of a fault without permanent reconfiguration.  

[IEEE 1991] 
 
Fault Tolerance:  The capability of the software product to maintain a specified level of 

performance in cases of software faults or of infringement of its specified interface.  
The specified level of performance may include failsafe capability.  This is often 
provided by the use of diverse redundant software modules.  [Nesi, 1999] 

 
Flaw:  A specific item that detracts from the operation or effectiveness of the software 

system without resulting in a failure or loss of operability.  [Williamson – Page 42] 
 
Formal Method:  A software specification and production method, based on a precise 

mathematical syntax and semantics, that comprises: a collection of mathematical 
notations addressing the specification, design and development phases of software 
production; a well–founded logical inference system in which formal verification 
proofs and proofs of other properties can be formulated; and a methodological 
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framework within which software may be developed from the specification in a 
formally verifiable manner. Formal methods can be operational denotational or dual 
(hybrid).  [Nesi, 1999] 

 
Handling Type Fault:  A fault characterized by an inability of the system’s logic to 

handle erroneous entries or parameters out of the normal bounds of the system.  
[Williamson – Page 46] 

 
Hazard Analysis:  the evaluation and documentation of hazards and formulation of a 

control mechanism that can affect a facility, system, subsystem, or component.  
[NHAG] 

 
Hazard Probability:  The likelihood, expressed in qualitative or quantitative terms, that 

a hazardous event will occur as: 
• Frequent – likely to occur frequently 
• Probable – will occur several times in the life of an item 
• Occasional – likely to occur at sometime in the life of an item 
• Remote – unlikely but possible to occur in the life of an item 
• Improbable – so unlikely that it can be assumed occurrence may not be 

experienced. 
[NHAG] 

 
Hazard Severity Categories:  A qualitative measurement of the worst potential 

consequence resulting from personnel error, environmental conditions, design 
inadequacies, procedural deficiencies, and system, subsystem, and component failure 
or malfunction.  These categories are as follows: 
• Catastrophic – a hazardous occurrence in which the worst–case effects will cause 

death, disabling personnel injury, or facility or system loss 
• Critical – a hazardous occurrence in which the worst–case effects will cause 

severe (non-disabling) personnel injury, severe occupational illness, or major 
property or system damage 

• Marginal – a hazardous occurrence in which the worst–case effects could cause 
minor injury, minor occupational illness, or minor system damage 

• Negligible – a hazardous occurrence in which the worst–case effects could cause 
less than minor injury, occupational illness, or system damage. 

[NHAG] 
 
Independent Verification and Validation (IV&V):  A process whereby the products of 

the software development lifecycle phases are independently reviewed, verified, and 
validated by an organization that represents the acquirer of the software and is 
completely independent of the provider.  [NASA, 1997] 

 
Inhibit:  A design feature that provides a physical interruption between an energy source 

and a function (e.g., a relay or transistor between a battery and a pyrotechnic initiator, 
a latch valve between a propellant tank and a thruster, etc.).  [IEEE 1991] 
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Interlock:  Hardware or software function that prevents succeeding operations when 

specific conditions exist.  [IEEE 1991] 
 
Intermittent Failure:  The failure of an item that persists for a limited duration of time 

following which the system recovers its ability to perform a required function without 
being subjected to any action of corrective maintenance, possibly recurrent.  
[Williamson – Page 60], [Nesi, 1999] 

 
Invalid Failure:  “A failure that is, but isn’t” 
 

(a) An apparent operation of the primary system that appears as a failure or defect to 
the user but is actually an intentional design or limitation. 

 
(b) A developmental shortcoming resulting from the developer not designing the 
system to the expectations of the user. 

 
(c) The operation of the system in an environment for which the system was not 
designed or certified to function.  [Williamson – Page 60] 

 
Latent Failure:  A failure that has occurred and is present in a part of a system but has 

not yet contributed to a system failure.  [Williamson – Page 60] 
 
Lifecycle:  The period that starts when a software product is conceived and ends when 

the software is no longer available for use.  The software lifecycle traditionally has 
eight phases: Concept and Initiation; Requirements; Architectural Design; Detailed 
Design; Implementation; Integration and Test; Acceptance and Delivery; and 
Sustaining Engineering and Operations.  [IEEE 1991] 

 
Life–Cycle Management (LCM):  Life–cycle management means the management of 

an item or system from inception/Pre–Milestone 0 through program termination.  The 
term is also used in relation to Supply Management as management of an item from 
the time it first comes into the government inventory until it is disposed of at the end 
of its service life.  The Services/Agencies have organizations to perform this level of 
management, but it can also be done under contract.  LCM includes the procurement 
of initial and sustainment spare and repair parts; item management of those parts; 
oversight of the maintenance process (government or contractor); configuration 
control; planning for product improvements; the collection of failure and demand data, 
analysis and appropriate support process modification; and proper disposal action at 
the end of the lifecycle.  [DISA/D4] 

 
Lines–of–code metrics, LOC:  A software metric that counts the lines of code of a 

source, in order to evaluate its size.  [Nesi, 1999] 
 



288 

Local Failure:  A failure that is present in one part of the system but has not yet 
contributed to a complete system failure.  [Williamson – Page 60] 

 
Locking Up:  The state in which a software system fails to respond or execute any action 

for all commands, analogous to a Type 4 Failure.  [Williamson – Page 40] 
 
Loss:  An expression of the unrecoverable expenses related to correcting system failures, 

software defects, management oversights, and other compensatory costs.  
[Williamson – Page 23] 

 
Millennium problem:  Y2K Bug; The problem due to the definition of the date in 

software system by means of a couple of characters for storing the last two digit of 
the years.  This causes problems when dates varying also for the hundreds of years 
are manipulated.  It has been called millennium problem since it has been mainly 
highlighted around the year 2000.  [Nesi, 1999] 

 
Minor Flaw: A flaw does not cause a failure, does not impair usability, and the desired 

requirements are easily obtained by working around the defect.  [Williamson – Page 
60], [Nesi, 1999] 

 
Mishap:  An accident; The occurrence of an unplanned event or series of events and 

actions that results in death, injury, occupational illness, or damage to or loss of 
equipment, property, damage to the environment, or otherwise reducing the worth of 
the system; an accident.  [IEEE 1991], [NASA, 1997], [NHAG] 

 
Mongolian Horde Technique:  Analogous to the Mongolian Horde technique of warfare 

in which the armies of Genghis Khan would amass an overwhelming force of 
untrained warriors against a smaller enemy and conquer them through disproportional 
numbers.  In the field of Software Engineering, the technique implies the use of an 
overwhelming number of intermediate level programmers and developers to generate 
an event that would be better managed using fewer and better skilled developers.  
[Williamson – Page 35] 

 
Negative Testing:  Software Safety Testing to ensure that the software will not go to a 

hazardous state or generate outputs that will create a hazard in the system in response 
to out of bound or illegal inputs.  [IEEE 1991] 

 
No–Go Testing:  Software Safety Testing to ensure that the software performs known 

processing and will go to a known safe state in response to specific hazardous 
situations.  [IEEE 1991] 

 
Partial Failure:  The failure of one or more modules of the system, or the system’s 

inability to accomplish one or more system requirements while the rest of the system 
remains operable.  [Williamson – Page 60] 
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Performance Requirements:  Requirements imposing specific constraints on the final 
performance of the system.  This is typical of real–time and critical systems.  [Nesi, 
1999] 

 
Performance Specification:  A document that specifies the performance that the final 

system has to provide.  This is typical of real–time and critical systems.  [Nesi, 1999] 
 
Physical Failure:  A failure that is solely due to physical causes, e.g., heat, chemical 

corrosion, mechanical stress, etc.  [Nesi, 1999] 
 
Preliminary Design Review (PDR):  A review conducted to evaluate the progress, 

technical adequacy, and risk resolution of the selected design approach for one or 
more configuration items; to determine each design's compatibility with the 
requirements for the configuration item; to evaluate the degree of definition and 
assess the technical risk associated with the selected manufacturing methods and 
processes; to establish the existence and compatibility of the physical and functional 
interfaces among the configuration items and other items of equipment, facilities, 
software, and personnel; and as appropriate, to evaluate the preliminary operation and 
support documents.  For CSCIs, the review will focus on: (1) the evaluation of the 
progress, consistency, and technical adequacy of the selected architectural design and 
test approach, (2) compatibility between software requirements and architectural 
design, and (3) the preliminary version of the operation and support documents.  
[IEEE 1991] 

 
Preliminary Hazard Analysis (PHA):  Analysis performed at the system level to 

identify safety–critical areas, to provide an initial assessment of hazards, and to 
identify requisite hazard controls and follow–on actions.  [IEEE 1991] 

 
Quality:  The totality of features and characteristics of a product or service that bear on 

its ability to satisfy stated or implied needs.  Not to be exchanged with the "degree of 
excellence" or "fitness for use" that meet only partially the definition.  Software 
quality is defined in the ISO 9126 norm series.  Software quality includes: 
functionality, reliability, usability, efficiency, maintainability, and portability.  The 
quality of a system is the evaluation of the extent to which the system meets the 
above mentioned features.  The response of the system to these features is called the 
estimated quality profile.  Quality should not be used as a single term to express a 
degree of excellence in a comparative sense nor should it be used in a quantitative 
sense for technical evaluations.  To express these meanings, a qualifying adjective 
shall be used.  For example, use can be made of the following terms: "relative 
quality" where entities are ranked on a relative basis in the "degree of excellence" or " 
comparative sense" (not to be confused with grade); "quality level" in a "quantitative 
sense" (as used in acceptance sampling) and "quality measure" where precise 
technical evaluations are carried out.  [Nesi, 1999] 
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Quality Control:  Operational techniques and activities that are used to fulfill 
requirements for quality.  Quality control involves operational techniques and 
activities aimed at both monitoring a process and at eliminating causes of 
unsatisfactory performance at all stages of the quality loop in order to result in 
economic effectiveness.  [Nesi, 1999] 

 
Random Failure:  Failures that result from a variety of degradation mechanisms in the 

hardware.  Unlike failures arising from systematic failures, system failure rates 
arising from random hardware failures can be quantified with reasonable accuracy.  
[Nesi, 1999] 

 
Reactionary Type Fault:  A fault characterized by an inability of the system’s logic to 

react to acceptable values of inputs, as defined in the system requirements.  
[Williamson – Page 60] 

 
Reactive Software Safety System:  A software system that reacts to the operation of a 

hazardous function or safety–critical system, to react when the operation falls outside 
of some predetermined and acceptable bounds.  [Williamson – Page 121] 

 
Reliability:  The probability that a system will perform its required function(s) in a 

specified manner over a given period of time and under specified or assumed 
conditions.  [Hughes, 1999] 

 
Resource Based Failures:  Failures associated with the uncommanded lack of external 

resources and assets.  Resource Based Failures are generally externally based to the 
logic of the system and may or may not be software based.  [Williamson – Page 60] 

 
Risk:  (a) Chance of hazard or bad consequences; exposure to chance of injury or loss.  

Risk level is expressed in terms of hazard probability or severity.  [CALL, 2000] 
 

(b) As it applies to safety, exposure to the chance of injury or loss.  It is a function of 
the possible frequency of occurrence of the undesired event, of the potential severity 
of resulting consequences, and of the uncertainties associated with the frequency and 
severity.  [IEEE 1991] 

 
Risk Management:  (a) Risk management is divided into the following tasks: Risk 

assessment, Risk identification, Risk analysis and prioritization, Risk control, Risk 
management planning, Risk resolution and monitoring.  [Nesi, 1999] 

 
(b) The process of detecting, assessing, and controlling risk arising from operational 
factors and making decisions that balance risk costs with mission benefits.  Includes 
five steps: (identify the hazards; assess the hazards; develop controls and make risk 
decision; implement controls; and supervise and evaluate).  [CALL, 2000] 
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Risk Prioritization:  The assessment of the loss probability and loss magnitude for each 
identified risk item.  Prioritization involves producing a ranked and relative ordering 
of the risk items identified and analyzed.  [Nesi, 1999] 

 
Robustness:  The degree to which a system or component can function correctly in the 

presence of invalid inputs or stressful environmental conditions.  [Nesi, 1999] 
 
Safe:  A magnitude of software success and reliability in which the probability of 

hazardous events has been reduced to an acceptable predefined level.  [Williamson – 
Page 30] 

 
Safety:  (a) The ability of a system to operate without unacceptable risk in accordance 

with its requirements in a consistent and predictable manner for a given time in a 
given environment without mishap.  For system safety, all causes of failures which 
lead to an unsafe state shall be included; hardware failures, Software Failures, failures 
due to electrical interference, due to human interaction and failures in the controlled 
object.  The system safety also depends on many factors that cannot be quantified but 
can only be considered qualitatively.  [Nesi, 1999] 

 
(b) Freedom from the occurrence or risk of injury or loss; the quality of averting or 
not causing injury or loss.  [RHCD, 1980]. 

 
Safety Analysis.  A systematic and orderly process for the acquisition and evaluation of 

specific information pertaining to the safety of a system.  [IEEE 1991] 
 
Safety Architectural Design Analysis (SADA).  Analysis performed on the high–level 

design to verify the correct incorporation of safety requirements and to analyze the 
Safety Critical Computer Software Components (SCCSCs).  [IEEE 1991] 

 
Safety Assessment Index:  The relationship derived from the probability of a hazardous 

event or events against the severity of such events.  A Safety Assessment Index can 
be defined as a graduated list of terms and expressions, or as an ordinal list of 
increasing magnitude.  [Williamson] 

 
Safety–Critical:  (a) Those software operations that, if not performed, performed out–of 

sequence, or performed incorrectly could result in improper control functions (or lack 
of control functions required for proper system operation) that could directly or 
indirectly cause or allow a hazardous condition to exist.  [IEEE 1991] 

 
(b) A system whose failure may cause injury or death to human beings, e.g., an 
aircraft or nuclear power station control system.  Common tools used in the design of 
safety–critical systems are redundancy and formal methods.  [Nesi, 1999] 

 
Safety–Critical Computer Software Component (SCCSC):  Those computer software 

components (processes, modules, functions, values or computer program states) 
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whose errors (inadvertent or unauthorized occurrence, failure to occur when required, 
occurrence out of sequence, occurrence in combination with other functions, or 
erroneous value) can result in a potential hazard, or loss of predictability or control of 
a system.  [MIL-STD-882B, 1986] 

 
Safety–Critical Software:  Software that: (1) Exercises direct command and control 

over the condition or state of hardware components; and, if not performed, performed 
out–of–sequence, or performed incorrectly could result in improper control functions 
(or lack of control functions required for proper system operation), which could cause 
a hazard or allow a hazardous condition to exist.  (2) Monitors the state of hardware 
components; and, if not performed, performed out–of–sequence, or performed 
incorrectly could provide data that results in erroneous decisions by human operators 
or companion systems that could cause a hazard or allow a hazardous condition to 
exist.  (3) Exercises direct command and control over the condition or state of 
hardware components; and, if performed inadvertently, out–of–sequence, or if not 
performed, could, in conjunction with other human, hardware, or environmental 
failure, cause a hazard or allow a hazardous condition to exist.  [MIL-STD-882B, 
1986] 

 
Safety Detailed Design Analysis (SDDA):  Analysis performed on Safety–Critical 

Computer Software Components to verify the correct incorporation of safety 
requirements and to identify additional hazardous conditions.  [NASA – 1997] 

 
Software Economics:  The study of the economic effects of software development, 

integration, management, and operation.  In terms of Software Safety, Software 
Economics includes the study of the economic effects of software failure, hazardous 
operation, mitigation, and control integration.  [Williamson – Page 265] 

 
Software Engineering:  (a) The discipline of promoting the establishment of theoretical 

foundations and practical disciplines for software, similar to those found in the 
established branches of engineering.  [NATO, 1967] 

 
(b) The establishment and use of sound engineering principles in order to obtain 
economically software that is reliable and works efficiently on real machines.  
[NATO, 1969] 

 
(c) The application of a systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software.  [IEEE, 1991] 

 
Software Defect:  A software defect is a perceived departure in a software product from 

its intended properties, which if not rectified, would under certain conditions 
contribute to a software system failure (departure from required system behavior 
during operational use).  [Nesi, 1999] 
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Software Development Risk:  The risks to successful software development, as 
quantified by the ability to meet project requirements and goals within acceptable 
limits regardless of the potential for or incident of hazardous events during the 
operation of the software.  [Nogueira, 2000] 

 
Software Failure:  (a) The inability of a system or component to perform its required 

functions within specified performance requirements.  [IEEE 610] 
 

(b) The state in which a system has failed to execute or function per the defined 
requirements due to a design fault.  Failure is usually the result of an inability to 
control the triggering of a system fault.  Faults can be categorized in one or more of 
four types, depending on the circumstances leading to the failure and the resulting 
action.  Failures can be further divided into one of two categories based on the source 
of the failure.  [Williamson – Page 47] 

 
Software Fault:  (a) A design fault located in a software component.  See fault.  [Nesi, 

1999] 
 

(b) An imperfection or impairment in the software system that, when triggered, will 
result in a failure of the system to meet design requirements.  A fault is stationary and 
does not travel through the system.  [Williamson – Page 44] 

 
Software Flaw:  A specific item that detracts from the operation or effectiveness of the 

software system without resulting in a failure or loss of operability.  A software flaw 
does not result in a failure.  A flaw may reduce the aesthetic value of a product, but 
does not reduce the system’s ability to meet development requirements.  [Williamson 
– Page 42] 

 
Software Hazards:  The potential occurrence of an undesirable action or event that the 

software based system may execute due to a malfunction or instance of failure.  
[Williamson – Page 52] 

 
Software Malfunctions:  A malfunction is the condition wherein the system functions 

imperfectly or fails to function at all.  A malfunction is not defined by the failure 
itself, but rather by the fact that the system now fails to operate.  The term 
malfunction is a very general term, referring to the operability of the entire system 
and not to a specific component.  [Williamson – Page 50] 

 
Software Management:  The act of managing software development, integration, 

operation, and termination.  Software Safety requires additional management 
emphasis in safety assessments, decision–making, economics, and development 
atmosphere.  [Williamson – Page 251] 

 
Software Requirements Review (SRR):  A review of the requirements specified for one 

or more software configuration items to evaluate their responsiveness to and 
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interpretation of system requirements and to determine whether they form a 
satisfactory basis for proceeding into a preliminary (architectural) design of 
configuration items.  [IEEE Standard 610.12–1990] 

 
Software Requirements Specification (SRS):  Documentation of the essential 

requirements (functions, performance, design constraints, and attributes) of the 
software and its external interfaces.  [IEEE 1991] 

 
Software Reliability:  The ability of a software system to meet defined requirements 

over a specified measure of time or through a defined set of events.  Reliability can be 
defined as the ratio of the time of proper operation against total operation time, the 
ratio of proper operational events versus total operational events.  [Williamson – Page 
101] 

 
Software Safety Requirements Analysis (SSRA):  Analysis performed to examine 

system and software requirements and the conceptual design in order to identify 
unsafe modes for resolution, such as out–of–sequence, wrong event, deadlocking, and 
failure–to–command modes.  [IEEE 1991] 

 
Software Safety:  The application of the disciplines of system safety engineering 

techniques throughout the software lifecycle to ensure that the software takes positive 
measures to enhance system safety and that errors that could reduce system safety 
have been eliminated or controlled to an acceptable level of risk.  [IEEE 1991] 

 
Specification Fault:  A design fault of an item that results from its required function 

having been incorrectly or incompletely defined.  Specification faults often give rise 
to usability problems in operation, but can lead to other types of incident also.  They 
can only be detected by validation, not verification.  [Nesi, 1999] 

 
System Safety:  Application of engineering and management principles, criteria, and 

techniques to optimize safety and reduce risks within the constraints of operational 
effectiveness, time, and cost throughout all phases of the system lifecycle.  [IEEE 
1991] 

 
System Size:  A measure of the requirements, functions (function points), processes, 

scripts, frames, methods, objects, classes, or lines of code used to determine the size 
of the system.  Specific size does not necessarily cause a system to be safe or unsafe, 
rather size denotes the volume of the system.  [Williamson – Page 134] 

 
System Task:  The action requirements, goals, and objectives of the software system 

specified in requirements documentation.  [Williamson – Page 172] 
 
Test Readiness Review (TRR):  A review conducted to evaluate preliminary test results 

for one or more configuration items; to verify that the test procedures for each 
configuration item are complete, comply with test plans and descriptions, and satisfy 



295 

test requirements; and to verify that a project is prepared to proceed to formal test of 
the configuration items.  [IEEE 1991] 

 
Time to Develop:  A measurement of the time to develop the software system in terms of 

hours, months, or years.  Time is a factor of the system’s size, complexity, method of 
development, and personnel actually executing the development.  While time does not 
directly apply to System Safety, its sub–components do have an affect.  Time affects 
minor safety when assessing personnel turnover, system oversight and understanding 
of early generation against optimized components, and in the context of time critical 
development projects where a delay could fail to prevent a hazardous event.  
[Williamson – Page 135] 

 
Trap:  Software feature that monitors program execution and critical signals to provide 

additional checks over and above normal program logic.  Traps provide protection 
against undetected software errors, hardware faults, and unexpected hazardous 
conditions.  [IEEE 1991] 

 
Trigger:  An event, value, or system state that reacts with a system fault to initiate a 

failure.  The effects of a trigger can be controlled through the use of filters, controls, 
or error handlers.  [Williamson – Page 39] 

 
Type 1 Failure:  One of the four subsets of the Type Failure List – A failure type that 

occurs when a system executes an uncommanded action.  This failure type can occur 
when the system is not in operation, as it would be expected that the system would 
not receive any commands when not in operation.  This type of failure is not related 
to any command or provocation, and occurs outside of the system requirements.  This 
failure may be triggered by the state of the system or by an input not related to a 
command.  [Williamson – Page 40] 

 
Type 2 Failure:  One of the four subsets of the Type Failure List – A failure type that 

occurs when a system executes an inappropriate action for a specific command during 
system operation.  When a user or procedure generates a command to the system, it 
should be expected that the system would respond with a predetermined series of 
actions or responses.  In the case of a Type 2 Failure, the system executed a false 
response to a system command.  It should be noted that the system attempted to 
execute a response to the command, though be it incorrect.  [Williamson – Page 40] 

 
Type 3 Failure:  One of the four subsets of the Type Failure List – A failure type that 

occurs when a system fails to execute a required action for a specific command 
during system operation.  [Williamson – Page 40] 

 
Type 4 Failure:  One of the four subsets of the Type Failure List – A failure type that 

occurs when a system fails to respond or execute any action for all commands, 
essentially with the system “locking up.”  [Williamson – Page 40] 
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Usability:  The capability of the software product to be understood, learned, used and 
attractive to the user, when used under specified conditions.  Some aspects of 
functionality, reliability and efficiency will also affect usability, but for the proposes 
of ISO/IEC 9126 they are not classified as usability.  Usability should address all of 
the different user environments that the software may affect, which may include 
preparation for usage and evaluation of results.  [Nesi, 1999] 

 
User–friendly:  The typical definition for user interface presenting a set of appealing 

features that are perceived by users as easy systems to interact with.  [Nesi, 1999] 
 
Validation:  (1) An evaluation technique to support or corroborate safety requirements to 

ensure necessary functions is complete and traceable.  (2) The process of evaluating 
software at the end of the software development process to ensure compliance with 
software requirements.  [IEEE 1991] 

 
Verification:  (1) The process of determining whether the products of a given phase of 

the software development cycle fulfill the requirements established during the 
previous phase (see also validation).  (2) Formal proof of program correctness.  (3) 
The act of reviewing, inspecting, testing, checking, auditing, or otherwise establishing 
and documenting whether items, processes, services, or documents conform to 
specified requirements.  [IEEE 1991] 

 
WACSS:  A factious weapons arming and control software system derived for 

demonstration purposes within this dissertation.  [Williamson – Page 171] 
 
Waiver:  A variance that authorizes departure from a particular safety requirement where 

alternate methods are employed to mitigate risk or where an increased level of risk 
has been accepted by management.  [NASA, 1997] 
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APPENDIX B. INCIDENTS AND MISHAPS313 

1. ARIANE 5 FLIGHT 501 FAILURE 

On the morning of 04 June 1996, on the maiden flight of the Ariane 5 launcher 

and rocket, the launcher’s flight control system and the primary and secondary Inertial 

Reference Systems failed 36.7 seconds after lift off. 314   The failure of the Inertial 

Reference System (IRS) resulted in the instantaneous swiveling of the two solid rock 

booster and Vulcain cryogenic engine nozzles to full deflection.  As the craft passed an 

altitude of 12,000 feet, the launcher veered from its flight path, broke up, and exploded.  

The explosion was trigger by a system commanded self–destruct sequence responding to 

the aerodynamic loading and breaking up of the solid rocket boosters from the main 

vehicle. 

The Ariane 5 was equipped with two IRSs operating in parallel, with identical 

hardware and software.  One IRS was active and the second was in "hot" stand–by, and if 

the On–Board Computer (OBC) detected that the active IRS has failed it would have 

immediately switches to the other second, provided that this unit was functioning 

properly.  The Ariane 5 was also equipped with two OBCs and other redundant flight 

control systems.  The supporting IRS software was nearly identical to the IRS software of 

the Ariane 4 Launcher. 

During the final seconds of the flight, the vehicle’s solid booster and Vulcain 

main engine nozzles were commanded to full deflection by the OBC Software, based on 

data transmitted from the active IRS.  The IRS system had become corrupted, and was 

transmitting a diagnostic bit pattern, mistaken by the OBC for flight data.  The Primary 

IRS system failed due to an internal IRS software exception caused by the conversion of 

a larger 64–bit floating point value to a smaller 16–bit signed integer value.  Simply, the 

64–bit value was too large for the 16–bit value (limited at 32,768), resulting in an 

                                                                                                                                                 
313 Various syndicated news services and press wires. 
314 Lions, J. L., Prof., Chairman; ARIANE 5 Flight 501 Failure, Report by the Inquiry Board, ESA; Paris, 

France; 19 July 1996. 
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Operand Error Failure of the Primary IRS, and subsequent failure of the Secondary IRS 

when it attempted the conversion 72 milliseconds prior.  The Ada System Code was not 

programmed to protect against an Operand Error within that particular portion of logic.  

The specific logic module was designed to perform final alignment prior to lift off and 

served no purpose once the vehicle left the launch pad.  The alignment module was 

designed to continue to operate for approximately 40 seconds after lift off, based on 

requirements of the Ariane 4 vehicle, and was not required for the Ariane 5.  The 

Operand Error was a result of an extremely high Horizontal Bias related to the horizontal 

velocity of the vehicle as it continued through its flight acceleration.  The Horizontal Bias 

was higher then expected by the alignment module because the Ariane 5 vehicle 

accelerated faster then the Ariane 4.  While the values were consistent with design 

parameters for the Ariane 5, the IRS logic was not modified to compensate for the 

difference. 

A review of the recovered material, memory readouts, software code, and post 

flight simulation and reconstruction showed to be consistent with a single failure scenario.  

The mishap investigation board determined that the failure Ariane 501 was the result of 

the complete loss of guidance and attitude information 37 seconds after start of the main 

engine ignition sequence.  This loss of information was due to specification and design 

errors in the software of the inertial reference system resulting from an attempt to convert 

a 64–bit floating point value into a 16–bit integer.  Along with the loss of the Ariane 

rocket, four uninsured satellites worth over $500 million were destroyed. 

2. THERAC–25 RADIATION EXPOSURE INCIDENT 

Between June 1985 and January 1987, the Therac–25 Computerized Radiation 

Therapy Machine administered overdoses of radiation to six known patients, three of 

them resulting in deaths.315 

                                                                                                                                                 
315 Leveson, Nancy, U. of Washington; Turner, Clark S., U of California, Irvine; An Investigation of the 

Therac-25 Accidents, IEEE Computer, vol. 26, num. 7, pg. 18-41, Institute of Electrical and 
Electronics Engineers, Inc.; July 1993. 
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The Therac–25 was a medical–grade linear accelerator designed to accelerate 

electrons to create high–energy beams that can destroy tumors with minimal impact on 

the surrounding healthy tissue with energy similar to X–ray photons.  The Therac–25 was 

designed on the foundation of the Therac–20 and Therac–6, originally designed in 

collaboration with the Canadian Governmental Company Atomic Energy Commission 

Limited (AECL) and a French company called CGR.  Subsequent to the falling out of 

their joint relationship, AECL designed the Therac–25 unit as a solo venture.  In 

comparison to early version of the Therac unit, the Therac–25 was capable of producing 

25 million electron volts (25–MeV) of X–ray energy through a more compact and 

efficient double–pass accelerator technology developed by AECL.  The Therac–25 was 

more versatile and easier to use then its predecessors.  The increased energy could be 

better aimed at the target tumor, taking advantage of the phenomenon of "depth dose": 

“As the energy increases, the depth in the body at which maximum dose buildup occurs 

also increases, sparing the tissue above the target area.”  Eleven Therac–25 units were 

manufactured and distributed, five to the United States and six to Canada. 

The Therac–25 was designed to control safety interlocks and system operations 

through the use of software, to a greater extent then the Therac–20 and Therac–6 units.  

The Therac–6 and Therac–20 were designed with mechanical interlocks to protect and 

police the machine, as well as independent protective circuits for monitoring electron–

beam scanning.  These functions were automated in the Therac–25.  Post–mishap 

investigation revealed that the Therac–6 and Therac–20 software package was used as a 

baseline for the development of the Therac–25 code.  Investigators and quality assurance 

managers were previously unaware of the baseline code issue. 

In six separate incidents, patients received excessively high doses of X–ray 

energy, at times exceeding 20,000–rad (radiation absorbed dose).  A typical single 

therapeutic dose would be in the 200–rad range.  It should be noted that doses of 1,000 

rads could be fatal if delivered to the whole body, and that a 500 rads dose will cause 

death in 50 percent of the population.  Patients were administered doses as per the unit’s 

procedures, but the system’s safety interlocks failed to prevent the excessive radiation.  In 
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some cases, the machine administrated a lethal dose only to indicate that no dose had 

been administered, prompting the technician to administer a second dose.  In one 

particular case, a patient was received five successive lethal doses because the unit fell 

off line after administering each successive dose.  The patient later died.  Other patients 

received such extreme doses of energy as to leave burn marks on the opposite side of 

their torsos.  The experience could be equated to cooking the body from the inside out, 

only revealing surface damage when the underlying tissue was already destroyed. 

Due to potential liability and legal issues, coupled with the fear of business losses, 

it was difficult to immediately find out details behind the incidents.  Post–mishap 

investigation revealed that the unit had the potential for generating excessive doses of 

radiation that would go undetected and prevented by the Software Safety Interlocks due 

to race conditions in the data entry system.  Many of the faults that caused the radiation 

overdoses were also found in the Therac–20 software, but were never detected until after 

the Therac–25 accidents because the Therac–20 included hardware mechanical safety 

interlocks that prevented the excessive doses and subsequent injuries.  Many of the 

incidents went immediately unreported to the FDA due to a lack of understanding of the 

incident, or even the realization that an incident had even happened.  Additionally, 

reporting regulations for medical device incidents at that time applied only to equipment 

manufacturers and importers, and not users, and health–care professionals and institutions 

were not required to report incidents to manufacturers.  The law has since been amended. 

3. TITAN–4 CENTAUR/MILSTAR FAILURE 

On April 30, 1999, the United States Air Force was scheduled to launch a Titan–4 

Centaur rocket from the Cape Canaveral Air Station on Florida’s East Coast.316  The 

rocket’s mission was to place a MILSTAR Military Communication Satellite into a 

22,300 mile Earth orbit.  During the post launch flight, the rocket processed erroneous 

flight data computed from the Centaur’s upper stage software system.  The erroneous 

                                                                                                                                                 
316 MILSTAR Accident Board Releases Results, Air Force Press News (AFPN); Peterson Air Force Base, 

Colorado; 22 July 1999. 
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flight data resulted in the Titan rocket repeatedly attempting to reorient itself, in 

contradiction with opposing data to continue on its present flight path.  The conflict 

between flight data and erroneous computations resulted in the upper stage prematurely 

depleting itself of all usable hydrazine fuel.  Without sufficient fuel and a proper 

navigation solution, the Titan rocket fell into a low Earth orbit, and deployed the 

MILSTAR satellite in a useless position with respect to the rest of its constellation. 

The MILSTAR Satellite was to be part of an array of the Joint MILSTAR 

(Military Strategic Tactical and Relay) Satellite Communications System.  Once 

operational, the system would provide a worldwide, secure, jam resistant, strategic, and 

tactical communications capability for Joint Military use. 

The mishap investigation board found the primary cause of the mishap to be a 

failure within the Centaur upper stage software, which failed to detect and correct a 

human error made during manual entry of data values in the Centaur’s flight software file.  

Loaded with the incorrect software values, the Centaur lost all attitude control, and 

rendered itself incapable of flight.  The mishap review specifically faulted the 

development, testing and quality assurance process of the upper stage software module 

for the mishap. 

The Air Force Space Command attempted to salvage the MILSTAR Satellite with 

no success.  On May 4th, 1999, the Air Force declared the MILSTAR Satellite a complete 

loss and permitted it to drift in low Earth orbit as space–junk.  It has been estimated that 

it would cost the U. S. Military over $1 billion to replace the failed satellite.  Without it, 

the existing $3.8 billion satellite network would be useless. 
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4. PATRIOT MISSILE FAILS TO ENGAGE SCUD MISSILES IN 
DHAHRAN 

On the night of February 25, 1991, an Iraqi Scud Missile penetrated the Patriot 

Missile Defense Shield surrounding Dhahran, Saudi Arabia, and struck a warehouse used 

by U.S. Forces as a barracks, killing 28 and wounding 98 U.S. Army soldiers.317  U.S. 

and Allied Soldiers were in Saudi Arabia as part of coalition forces in support of 

Operation Desert Storm and Desert Watch to push Iraqi forces out of Kuwait.  The Patriot 

Missile Battery was setup to provide ballistic missile intercept protection for theater 

forces, and prevent an escalation of provoked hostilities against Israel. 

The Raytheon Company initially developed the Patriot Missile as a Surface to Air 

Missile (SAM) intended to intercept and destroy sub and super–sonic aircraft.  During the 

Gulf War of 1991, the U.S. Army was in need of a high–altitude intercept weapon to 

counter the ballistic missile threat of the Iraqi Scud Missile.  The Patriot Missile was 

reintroduced as a suitable COTS weapon to engage the threat.  No modifications were 

made to the weapon, despite the fact that the Scud missile was capable of flying at over 

Mach 6, well above the design requirements for the Patriot Fire Control System.318 

On the evening of February 25th, six Patriot batteries were located in the Al 

Jubayl–Dhahran– Bahrain area.  Two batteries were assigned to engage the Dhahran 

bound missile.  Of the two assigned batteries, one was out of commission for repair of a 

radar receiver.  The remaining battery was manned and operational, and capable of 

engaging the incoming Scud missile.  The assigned battery had been on–line 

continuously for four days due to a high concentration of Scud activity in the local area.  

During the four days of operation, due to software designed mathematical truncating and 

rounding flaw, the fire control system’s clock had compounded a drift of .36 seconds.  

The Patriot system was designed and tested for only 14 hours of continuous performance, 

making the clock drift negligible against slower flying aircraft.  Against a Mach 6 target, 
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of Defense News, Department of Defense; 05 June 1991. 
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a clock error of .36 seconds would equate to a missed firing control solution of 2407.68 

feet, well outside the kill envelope of the Patriot Missile.  All known procedures were 

followed, and the weapon was employed as directed. 

The post–mishap investigation concluded that the software generated clock drift 

was the most likely explanation as to why the battery did not effectively detect or engage 

the incoming Scud.  The clock drift was not felt to be a significant problem when Patriot 

was employed against slower flying aircraft and the system cycle times were kept to a 

minimum.  Against a highflying, fast moving, ballistic target, with long system cycle 

times, the clock drift error was an unacceptable factor.  Shutdown and reboots would 

have reset the clock and removed any drift.  That procedure was not released to the field 

units.  A similar error was noted on February 20th after the analysis of another failed Scud 

engagement.  The Raytheon Company had previously detected the error and had already 

shipping a software update to field units.  The software patch arrived on the morning after 

the Scud impacted the barracks compound. 

The Patriot was heralded as the hero of the Gulf War and was initially credited 

with a 90% kill ration.  The US General Accounting Office’s post war analysis 

determined that the Patriot was only credited with killing less then 9% of its targets.  The 

Congressional Research Service revised its figures, stating that there was conclusive 

proof of only one Scud warhead destroyed by the Patriot System.  Israeli analysts reached 

similar conclusions.  The Patriot contract has since been transferred to the Lockheed–

Martin Corp.319, 320 

                                                                                                                                                 
318 Note:  Mach 6 = Apx. 4,560 MPH, under standard conditions.  Mach 1 = Apx. 760 MPH at sea level, 

with an atmospheric pressure = 29.92 in Hg, and temperature of 70° F. 
319 Farrell, John A., Globe Staff Writer; The Patriot Gulf Missile 'Didn't Work', Boston Globe, pg. 1, 13; 

January 2001. 
320 Rogers, David, Staff Reporter; Flaw In Patriot Missiles Leads the U.S. to Replace Hundreds, Wall 

Street Journal; 23 March 2000. 
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5. USS YORKTOWN FAILURE 

In an attempt to reduce manpower, workloads, maintenance and the costs of 

operating future ships in the United States Navy, the Department of Defense attempted to 

design and deploy a series of so–called “Smart Ships” equipped with the latest in COTS 

software and hardware technology.  On one particular voyage in September 1997, the 

Aegis Guided Missile Cruiser U.S.S. Yorktown (CG–48) was left drifting dead in the 

water due to a Software Failure as simplistic as a “division by zero” error.321 

During maneuvers off the coast of Cape Charles, VA., a Yorktown crewmember 

manually entered a test value into the ship’s computer system.  Due to a failure to trap the 

erroneous value or even to isolate and handle the potential error, the system went into an 

infinite loop while it attempted to divide by zero, and subsequently brought the entire 

ship to a halt.  The ship’s control system was managed on a Windows NT architecture, 

and the error occurred within a Microsoft NT provided application.  The Navy confirms 

that the ship remained adrift for about two hours and forty–five minutes before personnel 

were able to restart the system and bring navigation and propulsion support back on–line.  

Investigation has revealed that a previous loss of propulsion also occurred on May 2nd, 

1997, directly related to the ship’s software.  It should be noted that the cruisers Hue City 

and Vicksburg also were sidelined by Windows designed bugs within their ship support 

and control systems.322 

Despite the numerous faults and errors, the Navy has considered the ship and its 

program a success due to the amount of information and lessons learned from the 

integration of Smart Technology with a deploying vessel.  The potential consequences of 

a vessel dead in the water could have been catastrophic, had there been a physical hazard 

to avoid or enemy to combat.  With a loss of ship’s systems, comes the potential loss of 

weapons control, further jeopardizing the crew and those within the range of the 

weapons. 
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6. MV–22 OSPREY CRASH AND SOFTWARE FAILURE 

After an embarrassing and catastrophic flight history, plagued with accidents, 

deaths, falsified maintenance records, and political pork–bellying the V–22 Osprey 

program was put on infinite suspension following the December 11, 2000 accident that 

killed four marines.323  The Osprey was noted for its ability to fly like a plane with its two 

oversized propellers at speeds in excess of 300 knots, but could tilt its wings and 

transition into a helicopter like mode for landing and hovering. 

The V–22 was developed by Boeing’s to support the militaries desire to 

incorporate a tilt–rotor type–wing in its future inventory.  The U. S. Navy lost interest 

early in the program due to mechanical problems and early system failures.  The U. S. 

Marines and U. S. Air Force remained dedicated the project, due to the need to replace its 

existing fleet of aging transport and logistics aircraft.  The recent series of accidents and 

revelations about maintenance irregularities have cost the Boeing Company one of its 

back–pocket supporters – the U.S. Air Force Special Operations Command, and resulting 

in the scrapping of a 50 aircraft order by the USAF. 

U. S. Senate Investigations discovered that the Marine V–22 Training Squadron, 

VMMT–204, was falsifying maintenance records by the order of the squadron’s 

commanding officer, LCOL O. Fred Leberman.  The CO had ordered the doctoring of 

maintenance data and operations reports to improve the aircraft’s poor reliability rate.  

The information surfaced from an anonymous tip from a squadron mechanic. 

On 11 December 2000, Crossbow–8 was on its final approach into Marine Corps 

Air Station New River, N.C., about 7 mi. from the airfield, when the aircraft suffered a 

leak in its No. 1 hydraulic system that drives flight–critical systems.  At the time of the 

hydraulic leak, the pilot was attempting to transition from forward flight fixed–wing 
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mode to helicopter mode.  When the leak was detected by the onboard flight control 

computers, a triple–redundant set of leak isolation and switching valves attempted to 

isolate and contain the leak, while preserving flight control.  Without hydraulic control, 

the pilot was dead stick and no ability to manipulate any control surface.  Due to a failure 

within the software logic the leak was not isolated properly and the aircraft departed 

controlled flight and impacted the ground, killing all four crewmembers. 

The Crossbow–8 had logged less then 160 flight hours before its fatal mishap.  

There have been three previous fatal mishaps with the V–22; one in 1991, killing four 

persons, attributed to faulty wiring; a second in June 1992, killing seven persons aboard, 

attributed to an oil leak and subsequent fire; and a third in April 2000, killing nineteen 

crewmembers and passengers, attributed to vortex ring state.324  It should be noted that 

the April 2000 mishap of Nighthawk–72 had suffered a navigational computer failure 

earlier in the flight and was relying on its wingman’s computers for system navigation.  

The computer failure was not “directly” attributed to the mishap.  Additionally, prior to 

the suspension of flight operations, the Marines had recorded no less then one dozen 

uncommanded flight event in which the aircraft flew without command and control of the 

pilot.  Other faults have been detected in various software modules including the modules 

controlling gyroscope systems.  The actual cost of the V–22 aircraft is not disclosed, but 

industry experts expect the price to be well in excess of the originally estimated $66 

Million stated by Boeing Aircraft.  There is no schedule to resume flight operations with 

the remaining seven Osprey aircraft. 

7. FAA – AIR TRAFFIC CONTROL FAILURE 

During the fall of 2000, the Federal Aviation Administration (FAA) performed a 

nationwide scheduled upgrade of its host software to its air traffic control system.325  This 

system was designed to provide a visual representation of an aircraft's identity, altitude, 

                                                                                                                                                 
324 Richmond, Peter, Crash Of The Osprey, GQ, pg. 138; January 2001. 
325 Lefevre, Greg; Richer, Susan; Afflerbach, Chuck; FAA Suspends Software Upgrades Following 

California Computer Glitches, Cable News Network, San Francisco, California Bureau; 24 October 
2000. 
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speed and direction to air traffic controllers from the FAA’s new high–speed computers.  

The upgrade had been ongoing since the beginning of the year.  During a period of five 

days, two of the newly upgraded Air Route Traffic Control Stations, one in Freemont, 

CA and a second in Los Angeles, CA completely shutdown, rendering the most of the 

state of California and western Nevada essentially blind to air traffic.  The shutdown 

caused flight delays nationwide and overseas.  The total losses in productivity, excess 

manpower and expenses, and lost revenue range in the tens of millions of dollars.  The 

actual figure is still under debate. 

Investigators attempted to isolate the failure to hardware, software, and/or human 

error.  After a detailed review, the FAA isolated the failure to the software upgrade 

package and its inability to receive data from some incoming aircraft.  Immediately, the 

FAA ordered a moratorium on all Air Route Traffic Control Centers nationwide not to 

install or test any more software upgrades until further notice.  At that time, 18 of the 21 

centers had received and installed the upgrade.  Three centers had not received the 

upgrade. 

8. WINDOWS 98 CRASH DURING THE COMDEX 1998 CONVENTION 

During a highly publicized demonstration of the newest Microsoft Operating 

System (OS) at COMDEX Spring 1998, Microsoft Chairman Bill Gates was left standing 

in front of blank screen after a full system crash.326  The public failure occurred while 

Bill Gates was addressing some 85,000–computer professionals at the annual technology 

conference.  Mr. Gates was the features speaker for the annual conference. 

The operating system crashed when a Microsoft technician attempted to plug an 

external scanner into the demonstration computer.  The demonstration moved to another 

computer to complete the presentation.  Mr. Gates smiled and noted that, "I guess we still 

have some bugs to work out.  That must be why we're not shipping Windows 98 yet."  

Windows 98 was designed to replace the 150 million copies of Windows 95, and was 
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supposed to make computers easier to use and accept additional peripherals through the 

use of plug and play technology.  Mr. Gates noted that "while we're all very dependent on 

technology, it doesn't always work.” 

The product was supposed to be released on January 1st, 1998, but fell behind 

deadlines due to numerous failures and bugs.  The Windows 98 OS was further tested and 

later distributed to the public in the summer of 1998.  Windows 98 was later replaced by 

Windows 2000, only after Microsoft was forced to issue numerous service packs and 

system advisories to overcome publicly noted faults and failures. 

9. DENVER AIRPORT BAGGAGE SYSTEM 

An example of poor software design is the Denver International Airport luggage 

controller.  In this case, Jones says that the senior executives did not have a sufficient 

background in software systems and as a result accepted "nonsensical software claims at 

face value.”  The airport boasted about its new "…automated baggage handling system, 

with a contract price of $193 million, will be one of the largest and most sophisticated 

systems of its type in the world.  It was designed to provide the high–speed transfer of 

baggage to and from aircraft, thereby facilitating quick turnaround times for aircraft and 

improved services to passengers.”  The baggage system, which came into operation in 

October 1995, included "over 17 miles of track; 5.5 miles of conveyors; 4,000 telecarts; 

5,000 electric motors; 2,700 photocells; 59 laser bar code reader arrays; 311 radio 

frequency readers; and over 150 computers, workstations, and communication servers.  

The automated luggage handling system (ALHS) was originally designed to carry up to 

70 bags per minute to and from the baggage check–in."327 

However there were fundamental flaws identified but not addressed in the 

development and testing stage.  ABC news later reported that “In tests, bags were being 

misloaded, misrouted or fell out of telecarts, causing the system to jam.”  The Dr. Dobbs 

Journal (January 1997) also carried an article in which the author claims that his software 
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simulation of the automatic baggage handling system of the Denver airport mimicked the 

real–life situation.  He concluded that the consultants did perform a similar simulation 

and, as a result, had recommended against the installation of the system.  However, the 

city overruled the consultant's report and gave the go–ahead (the contractors who were 

building the system never saw the report).328 

The report into the failure of the Denver ALHS says that the Federal Aviation 

Authority had required the designers (BAE Automated Systems Incorporated) to properly 

test the system before the opening date on 28th February 1995.  Problems with the ALHS 

had already caused the airport’s opening date to be postponed and no further delays could 

be tolerated by the city.  The report speculates that delays had already cost the airport 

$360 million by February 1995. 

The lack of testing inevitably led to problems with the ALHS.  One problem 

occurred when the photo eye at a particular location could not detect the pile of bags on 

the belt and hence could not signal the system to stop.  The baggage system loaded bags 

into telecarts that were already full, resulting in some bags falling onto the tracks, again 

causing the telecarts to jam.  This problem caused another problem.  This one occurred 

because the system had lost track of which telecarts were loaded or unloaded during a 

previous jam.  When the system came back on–line, it failed to show that the telecars 

were loaded.  Also the timing between the conveyor belts and the moving telecarts were 

not properly synchronized, causing bags to fall between the conveyor belt and the 

telecarts.  The bags then became wedged under the telecarts.  This eventually caused so 

many problems that there was a need for a major overhaul of the system. 

The government report concluded that the ALHS at the new airport was afflicted 

by "serious mechanical and software problems.”  However, you cannot help thinking how 

much the city was blamed for their part in a lack of demand for proper testing.  Denver 

International Airport had to install a $51 million alternative system to get around the 

problem.  However, United Airlines still continue to use the ALHS. 

                                                                                                                                                 
328 Dr. Dobbs Journal; January 1997. 



312 

Approved in 1989.  Planned to be operational by end of 1993.  53 sq. miles.  5 

runways, with possibly 12 in the future.  3 landings simultaneously in all weather 

conditions.  20 major airlines.  Cost $4.2B.  Needed large–scale baggage handling system.  

$193 million.  4000 telecars carry luggage across 21 miles of track.  Laser scanners read 

barcodes on luggage tags.  Photocells tracked telecars movement.  Controlled by 300 

computers.  Software bugs galore!  Telecars were misrouted and crashed.  Baggage was 

lost and damaged.  Without baggage handling, the airport could not open, costing $1.1M 

per day.  Airport opened in February 1995.  Baggage system had extra $88M spent on it.  

1 airline used it.  Others used an alternative carbon–based neural network system.  How 

can the software be tested and validated before it is put in charge of a system of this 

complexity? 

10. THE LONDON AMBULANCE SERVICE 

The failure of the London Ambulance Service (LAS) on Monday and Tuesday 26 

and 27 November 1992, was, like all major failures, blamed on a number of factors.  

These include inadequate training given to the operators, commercial pressures, no 

backup procedure, no consideration was given to system overload, poor user interface, 

not a proper fit between software and hardware and not enough system testing being 

carried out before hand.  Claims were later made in the press that up to 20–30 people 

might have died as a result of ambulances arriving too late on the scene.  According to 

Flowers, "The major objective of the London Ambulance Service Computer Aided 

Dispatch (LASCAD) project was to automate many of the human–intensive processes of 

manual dispatch systems associated with ambulance services in the UK.  Such a manual 

system would typically consist of, among others, the following functions: Call taking.  

Emergency calls are received by ambulance control.  Control assistants write down 

details of incidents on pre–printed forms."329 

The LAS offered a contract for this system and wanted it to be up and running by 

8th January 1992.  All the contractors raised concerns about the short amount of time 

                                                                                                                                                 
329 Flowers, Stephen; Software Failure: Management Failure; Chichester: John Wiley and Sons; 1996. 



313 

available but the LAS said that this was non–negotiable.  A consortium consisting of 

Apricot, Systems Options and Datatrak won the contract.  Questions were later asked 

about why their contract was significantly cheaper than their competitors.  (They asked 

for £1.1 million to carry out the project while their competitors asked for somewhere in 

the region of £8 million.) 

The system was lightly loaded at start–up on 26 October 1992.  Staff could 

manually correct any problems, caused particularly by the communications systems such 

as ambulance crews pressing the wrong buttons.  However, as the number of calls 

increased, a build up of emergencies accumulated.  This had a knock–on effect in that the 

system made incorrect allocations on the basis of the information it had.  This led to more 

than one ambulance being sent to the same incident, or the closest vehicle was not chosen 

for the emergency.  As a consequence, the system had fewer ambulance resources to use.  

With so many problems, the LASCAD generated exception messages for those incidents 

for which it had received incorrect status information.  The number of exception 

messages appears to have increased to such an extent the staff were not able to clear the 

queues.  Operators later said this was because the messages scrolled of the screen and 

there was no way to scroll back through the list of calls to ensure that a vehicle had been 

dispatched.  This all resulted in a viscous circle with the waiting times for ambulances 

increasing.  The operators also became bogged down in calls from frustrated patients who 

started to fill the lines.  This led to the operators becoming frustrated, which in turn led to 

an increased number of instances where crews failed to press the right buttons, or took a 

different vehicle to an incident than that suggested by the system.  Crew frustration also 

seems to have contributed to a greater volume of voice radio traffic.  This in turn 

contributed to the rising radio communications bottleneck, which caused a general 

slowing down in radio communications that, in turn, fed back into increasing crew 

frustration.  The system therefore appears to have been in a vicious circle of cause and 

effect.  One distraught ambulance driver was interviewed and recounted that the police 

are saying "Nice of you to turn up" and other things.  At 23:00 on October 28, the LAS 

eventually instigated a backup procedure, after the death of at least 20 patients. 
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An inquiry was carried out into this disaster at the LAS and a report was released 

in February 1993.  Here is what the main summary of the report said: "What is clear from 

the Inquiry Team's investigations is that neither the Computer Aided Dispatch (CAD) 

system itself, nor its users, were ready for full implementation on 26 October 1992.  The 

CAD software was not complete, not properly tuned, and not fully tested.  The resilience 

of the hardware under a full load had not been tested.  The fall back option to the second 

file server had certainly not been tested.  There were outstanding problems with data 

transmission to and from the mobile data terminals. …  Staff, both within Central 

Ambulance Control (CAC) and ambulance crews, had no confidence in the system and 

was not all fully trained and there was no paper backup.  There had been no attempt to 

foresee fully the effect of inaccurate or incomplete data available to the system (late 

status reporting/vehicle locations etc.).  These imperfections led to an increase in the 

number of exception messages that would have to be dealt with and which in turn would 

lead to more callbacks and enquiries.  In particular the decision on that day to use only 

the computer generated resource allocations (which were proven to be less than 100% 

reliable) was a high–risk move." 

In a 1994 report by Simpson, she claimed that the software for the system was 

written in Visual Basic and was run in a Windows operating system.  This decision itself 

was a fundamental flaw in the design.  "The result was an interface that was so slow in 

operation that users attempted to speed up the system by opening every application they 

would need at the start of their shift, and then using the Windows multi–tasking 

environment to move between them as required.  This highly memory–intensive method 

of working would have had the effect of reducing system performance still further."330 

The system was never tested properly and nor was their any feedback gathered 

from the operators before hand.  The report refers to the software as being incomplete and 

unstable, with the back up system being totally untested.  The report does say that there 

was "functional and maximum load testing" throughout the project.  However, it raised 

                                                                                                                                                 
330 Simpson, Moira; 999!: My Computers Stopped Breathing!; The Computer Law and Security Report, 

pg. 76-81, March – April 1995. 
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doubts over the "completeness and quality of the systems testing.”  It also questions the 

suitability of the operating system chosen. 

This along with the poor staff training was identified to be the main root of the 

problem.  The management staff was highly criticized in the report for their part in the 

organization of staff training.  The ambulance crew and the central control crew staff 

were, among other things, trained in separate rooms, which did not lead to a proper 

working relationship between the pair.  Here is what the report said about staff training: 

"Much of the training was carried out well in advance of the originally planned 

implementation date and hence there was a significant "skills decay" between then and 

when staff were eventually required to use the system.  There were also doubts over the 

quality of training provided, whether by Systems Options or by LAS's own Work Based 

Trainers (WBTs). …  This training was not always comprehensive and was often 

inconsistent.  The problems were exacerbated by the constant changes being made to the 

system."331 

                                                                                                                                                 
331  Inquiry into the London Ambulance Service; February 1993. 
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APPENDIX C. ABBREVIATIONS AND ACRONYMS 

 
ABF Action Based Failure 
AECL Atomic Energy of Canada Limited 
Attr Attributed 
BIT Built–In Test 
BIT Built In Test 
BITE Built–In Test Equipment 
BSI British Standards Institute 
C(H) The Consequence Severity of a Hazardous Event 
C2 Command and Control 
C3 Command, Control, and Communications 
C4I Command, Control, Computers, Communications, and Intelligence 
CASE Computer Aided Software Engineering Tool 
CDR Critical Design Review 
CIA Central Intelligence Agency 
CMM Capability Maturity Model Management 
COTS Commercial Off The Shelf 
CPU Central Processing Unit 
CSA Code Safety Analysis 
CSCI Computer Software Configuration Item 
CSHA Code Level Software Hazard Analysis 
CT Coverage Testing 
DARPA Defense Advanced Research Projects Agency 
DID Data Item Description 
DISA Defense Information Systems Agency 
DoD Department of Defense 
DODD Department of Defense Directive 
DoT Department of Transportation 
E The set of all Events in the system, where the set of Events contains 

Inputs, Outputs, Limits, and / or Processes. 
EPA Environmental Protection Agency 
EST Eastern Standard Time 
FBC Faster, Better, Cheaper 
FDIR Fault Detection, Isolation, and Recovery 
FMECA Failure Modes Effect and Criticality Analysis 
FTA Fault Tree Analysis 
GDP Gross Domestic Product 
GFE Government Furnished Equipment 
GMT Greenwich Mean Time, see also UTC 
GOTS Government Off The Shelf 
GUI Graphical User Interface 
(H) Hazardous Event 
HAZOP Hazardous Operation 
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I The set of all Inputs in the System 
IAM Instantiated Activity Model 
IEC International Electrotechnical Commission 
IEEE Institute of Electrical and Electronic Engineers 
IRS Internal Reference System 
IT Information Technology 
IV&V Independent Verification and Validation 
IW Information Warfare 
L The set of all Limits in the System 
JPL Jet Propulsion Laboratory 
JSSSH Joint Software System Safety Handbook 
JTO Joint Technology Office 
KISS Keep It Simple, Stupid 
MCO Mars Climate Orbiter 
MIB Mishap Investigation Board 
MIL–STD Military Standard 
MUD Multiple User Dimension, Multiple User Dungeon, Multiple User 

Dialogue 
NASA National Aeronautics and Space Administration 
NATO North Atlantic Treaty Organization 
NHB NASA Handbook 
NMI NASA Management Instruction 
NSA National Security Agency 
NUREG U.S. Nuclear Regulatory Commission 
O The set of all Outputs in the System 
OBC On–Board Computer 
ORM Operational Risk Management 
P The set of all Processes in the System 
P(H) The probability that a Hazardous Event (H) will occur 
PDR Preliminary Design Review 
PHA Preliminary Hazard Analysis 
PSDL Prototype System Description Language 
Pse Probability of System Execution 
QA Quality Assurance 
RBF Resource Based Failure 
RBT Requirements Based Testing 
SADA Safety Architectural Design Analysis 
S The Safety of the Software System 
SAI Safety Assessment Index 
SAM Surface to Air Missile 
SARA Safety Analysis and Risk Assessment 
SCCSC Safety–Critical Computer Software Component 
SCM Software Configuration Management 
SDDA Safety Detailed Design Analysis 
SDHA Software Design Hazard Analysis 
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SE Software Engineers, Software Engineering 
SFTA Software Fault Tree Analysis 
SRB Solid Rocket Booster 
SRHA Software Requirements Hazard Analysis 
SRR Software Requirements Review 
SRS Software Requirements Specification 
SSR Software Specification Review 
SSRA Software Safety Requirements Analysis 
SSSH Software System Safety Handbook 
STD Standard 
THAAS Theater High Altitude Area Defense System 
TRR Test Readiness Review 
UPS Uninterrupted Power Supply 
UTC Coordinated Universal Time, see also GMT 
WACSS Weapon Arming and Control Software System 
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APPENDIX D. DISSERTATION SUPPLEMENTS 

1. SOFTWARE SAFETY STANDARD TECHNIQUES REVIEW332 

STANDARD TECHNIQUE(S) 

AFISC – "Software System Safety"333  

• Nuclear Safety Cross–Check Analysis 
• Petri Nets 
• Software Fault Tree (soft Tree) – Uses of Fault 

Trees: Cutset, Quantitative, Common Cause 
Analysis 

• Software Sneak Circuit Analysis (Desk 
Checking, Code Walk–Through, Structural 
Analysis, Proof of Correctness) 

• Preliminary Software Hazard Analysis 
• Follow–on Software Hazard Analysis 

FDA – (DRAFT) Reviewer Guidance for Computer–
Controlled Devices334 

• Code Walk–Through 
• Failure Mode, Effects, and Criticality Analysis 
• Fault Tree Analysis  

FDA – "Reviewer Guidance for Computer–Controlled 
Medical Devices Undergoing 510(k) Review"335 • Failure Mode, Effects and Criticality Analysis  

IECWG9 – "Software for Computers in the 
Application of Industrial Safety–Related Systems"336 

• Cause Consequence Diagrams 
• Event Tree Analysis 
• Failure Mode, Effects, and Criticality Analysis 
• Fault Tree Analysis 
• Hazard and Operability Study 
• Monte–Carlo Simulation  

                                                                                                                                                 
332 NISTIR 5589, A Study on Hazard Analysis in High Integrity Software Standards and Guidelines, U.S. 

Department of Commerce Technology Administration, National Institute of Standards and 
Technology, Computer Systems Laboratory, Gaithersburg, Maryland; January 1995. 

333 AFISC SSH 1-1, Software System Safety, Headquarters Air Force Inspection and Safety Center; 05 
September 1985. 

334 (DRAFT) Reviewer Guidance for Computer-Controlled Devices, Medical Device Industry Computer 
Software Committee; January 1989. 

335 Reviewer Guidance for Computer-Controlled Medical Devices Undergoing 510(k) Review, Office of 
Device Evaluation, Center for Devices and Radiological Health, Food and Drug Administration. 

336 IEC/TC65A WG9, IEC 65A(Secretariat)122, Software for Computers in the Application of Industrial 
Safety-Related Systems, ver. 1.0, British Standards Institution; 26 September 1991. 



322 

IEEEP1228–C337, IEEEP1228–D338, IEEEP1228–E339

– "Draft Standard for Software safety Plans"340 

• Event Tree Analysis 
• Failure Modes and Effects Analysis 
• Fault Tree Analysis 
• Petri Nets 
• Sneak Circuit Analysis 
• Software Safety Requirements Analysis 
• Software Safety Design Analysis 
• Software Safety Code Analysis 
• Software Safety Test Analysis 
• Software Safety Change Analysis 

“Joint Software System Safety Handbook”341 

• Joint Vision of Software Safety based Best 
Practices of DOD, USCG, FAA, NASA, 
Contractors, and Academia 

• How–To Handbook for Implementation of 
Software System Safety. 

• Review of Current and Antiquated 
Governmental, Commercial, and International 
Standards 

• Introduction of Risk Management and System 
Safety, and Software Safety Engineering 

• Management of COTS 
• Sample Documentation 

JPL – "Software Systems Safety Handbook" 342 

• Petri Nets 
• Software Fault Tree Analysis 
• Software Requirements Hazard Analysis 
• Software Top–Level and Detailed Design Hazard 

Analysis 
• Code–Level Hazard Analysis 
• Interface Hazard Analysis 
• Software Change Hazard Analysis 

                                                                                                                                                 
337 IEEEP1228-C P1228, (DRAFT C) Draft Standard for Software Safety Plans, Institute of Electrical 

and Electronics Engineers; 13 November 1990. 
338 IEEEP1228-D P1228, (DRAFT D) Standard for Software Safety Plans, Institute of Electrical and 

Electronics Engineers, Inc.; 06 March 1991. 
339 IEEEP1228-E P1228, (DRAFT E) Standard for Software Safety Plans, Institute of Electrical and 

Electronics Engineers, Inc.; 19 July 1991. 
340  Note:  The Draft IEEEP 1228 Series has recently been formalized as IEEE 1228-1994, IEEE Standard 

for Software Safety Plans, Institute of Electrical and Electronics Engineers, Inc.; 2002. 
341  Software System Safety Handbook, A Technical & Managerial Team Approach, Joint Software System 

Safety Committee, Joint Services System Safety Panel; December 1999. 
342  JPL D-10058, Software Systems Safety Handbook, prepared by the Jet Propulsion Laboratory for the 

National Aeronautics and Space Administration; 10 May 1993. 
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MIL–STD–882B – " System Safety Program 
Requirements" 343 

• Code Walk–Through 
• Cross Reference Listing Analysis 
• Design Walk–Through 
• Nuclear Safety Cross–Check Analysis 
• Petri Net Analysis 
• Software Fault Tree Analysis 
• Software/Hardware Integrated Critical Path 

Analysis 
• Software Sneak Analysis 
• Software Requirements Hazard Analysis 
• Top–Level Design Hazard Analysis 
• Detailed Design Hazard Analysis 
• Code–Level Software Hazard Analysis 
• Software Safety Testing 
• Software/User Interface Analysis 
• Software Change Hazard Analysis 

UK STAN 0055 – "Requirements For Safety Related 
Software In Defence Equipment"344 

• Common Cause Failure Analysis 
• Event Tree Analysis 
• Software Hazard Analysis 
• Software Classification 
• Software Functional Analysis 
• Failure Modes and Effects Analysis 
• Fault Tree Analysis  

Ontario Hydro – "Standard for Software Engineering 
of Safety Critical Software"345 • Code Hazards Analysis  

NASA–I1740 – "(Interim) NASA Software Safety 
Standard" 346, 347 

• Software Safety Requirements Analysis 
• Software Safety Architectural Design Analysis 
• Software Safety Detailed Design Analysis 
• Code Safety Analysis 
• Software Test Safety Analysis 
• Software Change Analysis  

Table 19 Software Safety Standard Techniques Review 

                                                                                                                                                 
343 MIL-STD-882B, System Safety Program Requirements, Department of Defense; 30 March 1984. 
344 Defence Standard 00-55, Requirements For Safety Related Software In Defence Equipment, Ministry 

of Defence, United Kingdom; 01 August 1997. 
345 Standard for Software Engineering of Safety Critical Software, Rev. 0, Ontario Hydro; Ontario, 

Canada; December 1990. 
346 NSS 1740.13, (Interim) NASA Software Safety Standard, National Aeronautics and Space 

Administration; February 1996. 
347  Note:  NSS 1740.13 has been formalized as NASA-STD-8719.13A, NASA Technical Standard for 

Software Safety, National Aeronautics and Space Administration; 15 September 1997. 
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2. COVERAGE TESTING MEASURES348 

The following is a list of coverage testing measures for determining the 

completeness and functionality of a Software System.  The intent of coverage testing is to 

find faults and triggers within the system or its independent modules.  The level of 

Coverage is measured by the amount of testing completed within each field of testing, 

determined by the level of effort and completeness of each testing field.  For example, 

100% line coverage is not interpreted to mean that every line of code was executed, but 

to mean that every line of code was tested for every possible fault and trigger that could 

occur from the simple execution of a line of code. 

1. Line coverage.  Test every line of code (Or Statement coverage: test every 
statement). 

2. Branch coverage.  Test every line, and every branch on multi–branch lines. 

3. N–length sub–path coverage.  Test every sub–path through the program of length 
N.  For example, in a 10,000 line program, test every possible 10–line sequence of 
execution. 

4. Path coverage.  Test every path through the program, from entry to exit.  The 
number of paths may be exponentially large to test, compared to lines of code. 

5. Multicondition or predicate coverage.  Force every logical operand to take every 
possible value.  Two different conditions within the same test may result in the 
same branch, and so branch coverage would only require the testing of one of 
them. 

6. Trigger every assertion check in the program.  Initiate and test the response of 
all triggers within a system using real and impossible data where able. 

7. Loop coverage.  Test the execution of all loops to detect bugs that exhibit 
themselves only when a loop is executed more than once. 

8. Every module, object, component, tool, subsystem, etc.  This includes the testing 
of COTS / GOTS systems with which the developer has no access to code level 
testing methods.  The programming staff does not have the source code to these 
components, so measuring line coverage is impossible.  At a minimum, testers 

                                                                                                                                                 
348 Kaner, Cem; Software Negligence and Testing Coverage, Software QA Quarterly, vol. 2, num. 2, pg. 

18; 1995/1996. 
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need a list of all these components and test cases that exercise each one at least 
once. 

9. Fuzzy decision coverage.  If the program makes heuristically–based or similarity–
based decisions, and uses comparison rules or data sets that evolve over time, 
check every rule several times over the course of training. 

10. Relational coverage.  Checks whether the subsystem has been exercised in a way 
that tends to detect off–by–one errors such as errors caused by using < instead of 
<=.  This coverage includes: 

• Every boundary on every input variable. 

• Every boundary on every output variable. 

• Every boundary on every variable used in intermediate calculations. 

11. Data coverage.  At least one test case for each data item / variable / field in the 
program. 

12. Constraints among variables: (Reliance) Let X and Y be two variables in the 
program.  X and Y constrain each other if the value of one restricts the values the 
other can take.  For example, if X is a transaction date and Y is the transaction's 
confirmation date, Y cannot occur before X. 

13. Each appearance of a variable.  Suppose that you can enter a value for X on 
three different data entry screens, the value of X is displayed on another two 
screens, and it is printed in five reports.  Change X at each data entry screen and 
check the effect everywhere else X appears. 

14. Every type of data sent to every object.  A key characteristic of object–oriented 
programming is that each object can handle any type of data (integer, real, string, 
etc.) that you pass to it.  So, pass every conceivable type of data to every object. 

15. Handling of every potential data conflict.  Check for the entry of inconsistent or 
incompatible data from dissimilar points of the system to induce a conflict, testing 
for reaction and handling.  For example, in an appointment–calendaring program, 
what happens if the user tries to schedule two appointments at the same date and 
time? 

16. Handling of every error state.  Verifying the ability of a program to handle 
induced errors, including all possible error states, effects on the stack, available 
memory, handling of keyboard input, etc. 

17. Every complexity / maintainability metric against every module, object, 
subsystem, etc.  Mathematical and logic checks for completeness and validity. 

18. Conformity of every module, subsystem, etc. against every corporate coding 
standard.  Several organizations believe that it is useful to measure characteristics 
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of the code, such as total lines per module, ratio of lines of comments to lines of 
code, frequency of occurrence of certain types of statements, etc.  A module that 
does not fall within the "normal" range might be summarily rejected (bad idea) or 
re–examined to see if there is a better way to design this part of the program. 

19. Table–driven code.  The table is a list of addresses or pointers or names of 
modules.  In a traditional CASE statement, the program branches to one of several 
places depending on the value of an expression.  In the table–driven equivalent, 
the program would branch to the place specified in, say, location 23 of the table.  
The table is probably in a separate data file that can vary from day to day or from 
installation to installation.  By modifying the table, you can radically change the 
control flow of the program without recompiling or relinking the code.  Some 
programs drive a great deal of their control flow this way, using several tables.  
Examples include: 

• Check that every expression selects the correct table element 

• Check that the program correctly jumps or calls through every table 
element 

• Check that every address or pointer that is available to be loaded into these 
tables is valid (no jumps to impossible places in memory, or to a routine 
whose starting address has changed) 

• Check the validity of every table that is loaded at any customer site. 

20. Every interrupt.  An interrupt is a special signal that causes the computer to stop 
the program in progress and branch to an interrupt handling routine.  Later, the 
program restarts from where it was interrupted.  Interrupts might be triggered by 
hardware events (I/O or signals from the clock that a specified interval has 
elapsed) or software (such as error traps).  Generate every type of interrupt in 
every way possible to trigger that interrupt. 

21. Every interrupt at every task, module, object, or even every line.  The interrupt 
handling routine might change state variables, load data, use or shut down a 
peripheral device, or affect memory in ways that could be visible to the rest of the 
program.  The interrupt can happen at any time–between any two lines, or when 
any module is being executed.  The program may fail if the interrupt is handled at 
a specific time.  Example: what if the program branches to handle an interrupt 
while it is in the middle of writing to the disk drive? 

22. Every anticipated or potential race.  Imagine two events, A and B.  Both will 
occur, but the program is designed under the assumption that A will always 
precede B.  This sets up a race between A and B –if B ever precedes A, the 
program will probably fail.  To achieve race coverage, you must identify every 
potential race condition and then find ways, using random data or systematic test 
case selection, to attempt to drive B to precede A in each case.  Races can be 
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subtle.  Suppose that you can enter a value for a data item on two different data 
entry screens.  User 1 begins to edit a record, through the first screen.  In the 
process, the program locks the record in Table 1.  User 2 opens the second screen, 
which calls up a record in a different table, Table 2.  The program is written to 
automatically update the corresponding record in the Table 1 when User 2 
finishes data entry.  Now, suppose that User 2 finishes before User 1.  Table 2 has 
been updated, but the attempt to synchronize Table 1 and Table 2 fails.  What 
happens at the time of failure, or later if the corresponding records in Table 1 and 
2 stay out of synch? 

23. Every time–slice setting.  Users can control the grain of switching between tasks 
or processes.  The size of the time quantum that is chosen can make race bugs, 
time–outs, interrupt–related problems, and other time–related problems more or 
less likely.  Complete coverage is a difficult problem in this instance because 
testers are not just varying time–slice settings through every possible value.  
Testers also have to decide which tests to run under each setting.  Given a planned 
set of test cases per setting, the coverage measure looks at the number of settings 
you have covered. 

24. Varied levels of background activity.  In a multiprocessing system, tie up the 
processor with competing, irrelevant background tasks.  Look for effects on races 
and interrupt handling.  Similar to time–slices, your coverage analysis must 
specify categories of levels of background activity (figure out something that 
makes sense) and all timing–sensitive testing opportunities (races, interrupts, etc.). 

25. Each processor type and speed.  Which processor chips do you test under?  What 
tests do you run under each processor?  Testers are looking for: 

• Speed effects, like the ones you look for with background activity testing, 
and 

• Consequences of processors' different memory management rules, and 

• Floating point operations, and 

• Any processor–version–dependent problems that you can learn about. 

26. Every opportunity for file / record / field locking. 

27. Every dependency on the locked (or unlocked) state of a file, record or field. 

28. Every opportunity for contention for devices or resources. 

29. Performance of every module / task / object.  Test the performance of a module 
then retest it during the next cycle of testing.  If the performance has changed 
significantly, you are either looking at the effect of a performance–significant 
redesign or at a symptom of a new bug. 
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30. Free memory / available resources / available stack space at every line or on 
entry into and exit out of every module or object. 

31. Execute every line (branch, etc.) under the debug version of the operating 
system.  This shows illegal or problematic calls to the operating system. 

32. Vary the location of every file.  What happens if the user installs or moves one of 
the program's components, controls, initialization, or data files to a different 
directory or drive or to another computer on the network? 

33. Check the release disks for the presence of every file. 

34. Every embedded string in the program.  Use a utility to locate embedded strings.  
Then find a way to make the program display each string. 

35. Operation of every function / feature / data handling operation under every 
program preference setting. 

36. Operation of every function / feature / data handling operation under every 
character set, code page setting, or country code setting. 

37. Operation of every function / feature / data handling operation under the 
presence of every memory resident utility (inits, TSRs). 

38. Operation of every function / feature / data handling operation under each 
operating system version. 

39. Operation of every function / feature / data handling operation under each 
distinct level of multi–user operation. 

40. Operation of every function / feature / data handling operation under each 
network type and version. 

41. Operation of every function / feature / data handling operation under each level 
of available RAM. 

42. Operation of every function / feature / data handling operation under each type 
/ setting of virtual memory management. 

43. Compatibility with every previous version of the program. 

44. Ability to read every type of data available in every readable input file format.  If 
a file format is subject to subtle variations (e.g. CGM) or has several sub–types 
(e.g. TIFF) or versions (e.g. dBASE), test each one. 

45. Write every type of data to every available output file format.  Testing includes 
writing to every potential format as well as testing the readability of that format 
by appropriate secondary programs. 
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46. Every typeface supplied with the product.  Check all characters in all sizes and 
styles.  If your program adds typefaces to a collection of fonts that are available to 
several other programs, check compatibility with the other programs (nonstandard 
typefaces will crash some programs). 

47. Every type of typeface compatible with the program.  Testing includes the use of 
different TrueType and Postscript typefaces, and fixed–sized bitmap fonts. 

48. Every piece of clip art in the product.  Test each with this program.  Test each 
with other programs that should be able to read this type of art. 

49. Every sound / animation provided with the product.  Play them all under 
different device (e.g. sound) drivers / devices.  Check compatibility with other 
programs that should be able to play this clip–content. 

50. Every supplied (or constructible) script to drive other machines / software (e.g. 
macros) / BBS's and information services (communications scripts). 

51. All commands available in a supplied communications protocol. 

52. Recognized characteristics.  For example, every speaker's voice characteristics 
(for voice recognition software) or writer's handwriting characteristics 
(handwriting recognition software) or every typeface (OCR software). 

53. Every type of keyboard and keyboard driver. 

54. Every type of pointing device and driver at every resolution level and ballistic 
setting. 

55. Every output feature with every sound card and associated drivers. 

56. Every output feature with every type of printer and associated drivers at every 
resolution level. 

57. Every output feature with every type of video card and associated drivers at 
every resolution level. 

58. Every output feature with every type of terminal and associated protocols. 

59. Every output feature with every type of video monitor and monitor–specific 
drivers at every resolution level. 

60. Every color shade displayed or printed to every color output device (video card / 
monitor / printer / etc.) and associated drivers at every resolution level.  In 
addition, check the conversion to grey scale or black and white. 

61. Every color shade readable or scannable from each type of color input device at 
every resolution level. 
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62. Every possible feature interaction between video card type and resolution, 
pointing device type and resolution, printer type and resolution, and memory 
level. 

63. Every type of CD–ROM drive connected to every type of port (serial / parallel / 
SCSI) and associated drivers. 

64. Every type of writable disk drive / port / associated driver. 

65. Compatibility with every type of disk compression software.  Check error 
handling for every type of disk error, such as full disk. 

66. Every voltage level from analog input devices. 

67. Every voltage level to analog output devices. 

68. Every type of modem and associated drivers. 

69. Every FAX command (send and receive operations) for every type of FAX card 
under every protocol and driver. 

70. Every type of connection of the computer to the telephone line (direct, via PBX, 
etc.; digital vs. analog connection and signaling); test every phone control 
command under every telephone control driver. 

71. Tolerance of every type of telephone line noise and regional variation 
(including variations that are out of spec) in telephone signaling (intensity, 
frequency, timing, other characteristics of ring / busy / etc. tones). 

72. Every variation in telephone dialing plans. 

73. Every possible keyboard combination.  Keyboard combinations include tester 
hotkeys designed by debugging tools.  These hotkeys may crash a debuggerless 
program.  Other times, these combinations may reveal an Easter Egg (an 
undocumented, probably unauthorized, and possibly embarrassing feature).  The 
broader coverage measure is every possible keyboard combination at every error 
message and every data entry point. 

74. Recovery from every potential type of equipment failure.  Full coverage includes 
each type of equipment, each driver, and each error state.  For example, test the 
program's ability to recover from full disk errors on writable disks.  Include 
floppies, hard drives, cartridge drives, optical drives, etc.  Include the various 
connections to the drive, such as IDE, SCSI, MFM, parallel port, and serial 
connections, because these will probably involve different drivers. 

75. Function equivalence.  For each mathematical function, check the output against 
a known good implementation of the function in a different program.  Complete 
coverage involves equivalence testing of all testable functions across all possible 
input values. 
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76. Zero handling.  For each mathematical function, test when every input value, 
intermediate variable, or output variable is zero or near zero.  Look for severe 
rounding errors or divide–by–zero errors. 

77. Accuracy of every graph, across the full range of graphable values.  Include 
values that force shifts in the scale. 

78. Accuracy of every report.  Look at the correctness of every value, the formatting 
of every page, and the correctness of the selection of records used in each report. 

79. Accuracy of every message. 

80. Accuracy of every screen. 

81. Accuracy of every word and illustration in the manual. 

82. Accuracy of every fact or statement in every data file provided with the product. 

83. Accuracy of every word and illustration in the on–line help. 

84. Every jump, search term, or other means of navigation through the on–line 
help. 

85. Check for every type of virus / worm that could ship with the program. 

86. Every possible kind of security violation of the program, or of the system while 
using the program. 

87. Check for copyright permissions for every statement, picture, sound clip, or 
other creation provided with the program. 

88. Verification of the program against every program requirement and published 
specification. 

89. Verification of the program against user scenarios.  Use the program to do real 
tasks that are challenging and well specified.  For example, create key reports, 
pictures, page layouts, or other documents events to match ones that have been 
featured by competitive programs as interesting output or applications. 

90. Verification against every regulation (IRS, SEC, FDA, etc.) that applies to the 
data or procedures of the program. 

91. Usability tests of every feature / function of the program. 

92. Usability tests of every part of the manual. 

93. Usability tests of every error message. 

94. Usability tests of every on–line help topic. 

95. Usability tests of every graph or report provided by the program. 
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96. Localizability / localization tests every string.  Check program's ability to display 
and use this string if it is modified by changing the length, using high or low 
ASCII characters, different capitalization rules, etc. 

97. Compatibility with text handling algorithms under other languages (sorting, 
spell checking, hyphenating, etc.) 

98. Every date, number, and measure in the program. 

99. Hardware and drivers, operating system versions, and memory–resident 
programs that are popular in other countries. 

100. Every input format, import format, output format, or export format that would 
be commonly used in programs that are popular in other countries. 

101. Cross–cultural appraisal of the meaning and propriety of every string and 
graphic shipped with the program. 

 
3. DEFINITION OF SOFTWARE ENGINEERING 

In 1967, the NATO Science Committee referred to the state of the art of Software 

Engineering as the discipline of “...promoting the establishment of theoretical 

foundations and practical disciplines for software, similar to those found in the 

established branches of engineering.”349  Two years later, NATO refined its definition of 

Software Engineering as “the establishment and use of sound engineering principles in 

order to obtain economically software that is reliable and works efficiently on real 

machines.” 350   The IEEE Standard simply defined Software Engineering as “the 

application of a systematic, disciplined, quantifiable approach to the development, 

operation, and maintenance of software.”351 

 

                                                                                                                                                 
349 Software Engineering, Report on a conference by the NATO Science Committee, NATO Science 

Committee; 1967. 
350 Naur, Peter; Randall, Brian; Editors, Software Engineering, Report on a conference by the NATO 

Science Committee, NATO Science Committee, January 1969. 
351 def: Software Engineering, IEEE Standard Glossary of Software Engineering Terminology, IEEE 

Standard 610.12, Institute of Electrical and Electronics Engineers, Inc.; 1990, 1991. 
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APPENDIX E. DISSERTATION METRIC 

1. INITIAL HAZARD IDENTIFICATION 

Fault Trigger Failure Malfunction Hazard Consequence 
Loss of weapon due to incorrect 
targeting and delivery parameters Cost of Weapon 

Danger to the airframe when deploying 
a weapon out of proper delivery 
parameters 

Loss of Airframe, Loss of Aircrew. 

Weapon could possibly fall on 
undesired target 

Blue on White (Neutral) Collateral 
Damage 

Weapon could possibly fall on friendly 
forces Blue on Blue (Friendly Fire) Casualty 

D
ro

p 
in

co
rr

ec
t w

ea
po

n 
fr

om
 

py
lo

n 

Resulting lack of sufficient weapons to 
complete mission 

Inability to complete mission tasking, 
risk to friendly force protection, risk to 
own protection. 

Deployment of weapon without 
configuration or improper 
configuration data 

Cost of Weapon 

Danger to the airframe when deploying 
an improperly configured weapon Loss of Airframe, Loss of Aircrew. 

Weapon could possibly fall on 
undesired target 

Blue on White (Neutral) Collateral 
Damage 

Weapon could possibly fall on friendly 
forces Blue on Blue (Friendly Fire) Casualty 

Resulting lack of sufficient weapons to 
complete mission 

Lo
ss

 o
f w

ea
po

n’
s c

on
fig

ur
at

io
n 

da
ta

 

Inability of the weapon to properly 
arm, fuse, and target 

Inability to complete mission tasking, 
risk to friendly force protection, risk to 
own protection. 

Weapon incapable of acquiring and 
striking the target Cost of Weapon 

Danger to the airframe when deploying 
a weapon out of proper delivery 
parameters 

Loss of Airframe, Loss of Aircrew. 

Weapon could possibly fall on 
undesired target 

Blue on White (Neutral) Collateral 
Damage 

Weapon could possibly fall on friendly 
forces Blue on Blue (Friendly Fire) Casualty 

In
ab

ili
ty

 to
 p

re
ve

nt
 w

ea
po

ns
 

re
le

as
e 

ou
ts

id
e 

of
 th

e 
w

ea
po

n’
s 

en
ve

lo
pe

 

Resulting lack of sufficient weapons to 
complete mission 

Inability to complete mission tasking, 
risk to friendly force protection, risk to 
own protection. 
Cost of Weapon 

In
ab

ili
ty

 
to

 fu
se

 
w

ea
po

n 
– 

D
ea

d 
Fu

se
 

Weapon not detonating on target Inability to complete mission tasking, 
risk to friendly force protection, risk to 
own protection. 
Loss of Airframe, Loss of Aircrew 

Weapon could inadvertently detonate 
close to delivery aircraft 

Inability to complete mission tasking, 
risk to friendly force protection, risk to 
own protection. 
Cost of Weapon 

W
ea

po
n 

fu
si

ng
 to

 
de

to
na

te
 to

o 
ea

rly
 

af
te

r w
ea

po
n’

s 
re

le
as

e 

Weapon not detonating on target Inability to complete mission tasking, 
risk to friendly force protection, risk to 
own protection. 
Inability to complete mission tasking, 
risk to friendly force protection, risk to 
own protection. 
Inability to control aircraft – Loss of 
Airframe, Loss of Aircrew 

U
/K

 a
t p

re
se

nt
 e

va
lu

at
io

n 

U
/K

 a
t p

re
se

nt
 e

va
lu

at
io

n 

U
/K

 a
t p

re
se

nt
 e

va
lu

at
io

n 

Si
gn

al
 

in
co

m
pa

tib
ili

ty
 / 

fe
ed

ba
ck

 to
 th

e 
A

irc
ra

ft 
D

at
a–

B
us

 

Aviation Data–Bus unable to process 
flight data 

Damage to vulnerable aviation 
software systems on the data–bus 

Table 20 WACSS Initial Hazard Identification Table 



334 

The example Initial Hazard Identification Table demonstrated in Table 20 serves 

as an illustration to the dissertation model in Chapter V.E.2 and process Step 4. Action 1. 

INITIAL SAFETY ASSESSMENT 

For the purpose of the WACSS, the following Consequence Severity Categories 

are agreed upon. 

   DEFINITION 

I CATASTROPHIC 
Complete military mission failure, 
loss of Blue Force life, or loss of the 
aircraft. 

II CRITICAL 

Major military mission degradation, 
loss if White Force life, severe injury 
to Blue Force, significant damage to 
the aircraft, or complete system 
damage. 

III MARGINAL / MODERATE 

Minor military mission degradation, 
complete loss of the weapon, minor 
damage to the aircraft, or major 
system damage 

SE
V

ER
IT

Y
 

IV NEGLIGIBLE Less then minor military mission 
degradation or minor system damage. 

Table 21 WACSS Consequence Severity Categories 

The example Consequence Severity Category Table demonstrated in Table 21 

serves as an illustration to the dissertation model in Chapter V.D and process Steps 2.1 

and 2.2..  The Example numeric definition can be derived from the dissertation example 

in Table 7. 
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Malfunction Hazard Consequence Severity 
Loss of weapon due to incorrect 
targeting and delivery parameters 

Cost of Weapon III – Marginal / Moderate 

Danger to the airframe when 
deploying a weapon out of proper 
delivery parameters 

Loss of Airframe, Loss of Aircrew 
I – Catastrophic 

Weapon could possibly fall on 
undesired target 

Blue on White (Neutral) Collateral 
Damage II – Critical 

Weapon could possibly fall on 
friendly forces 

Blue on Blue (Friendly Fire) 
Casualty I – Catastrophic 

D
ro

p 
in

co
rr

ec
t w

ea
po

n 
fr

om
 

py
lo

n 

Resulting lack of sufficient 
weapons to complete mission 

Inability to complete mission 
tasking, risk to friendly force 
protection, risk to own protection. 

II – Critical 

Deployment of weapon without 
configuration or improper 
configuration data 

Cost of Weapon III – Marginal / Moderate 

Danger to the airframe when 
deploying an improperly 
configured weapon 

Loss of Airframe, Loss of Aircrew. I – Catastrophic 

Weapon could possibly fall on 
undesired target 

Blue on White (Neutral) Collateral 
Damage II – Critical 

Weapon could possibly fall on 
friendly forces 

Blue on Blue (Friendly Fire) 
Casualty I – Catastrophic 

Resulting lack of sufficient 
weapons to complete mission II – Critical 

Lo
ss

 o
f w

ea
po

n’
s c

on
fig

ur
at

io
n 

da
ta

 

Inability of the weapon to properly 
arm, fuse, and target 

Inability to complete mission 
tasking, risk to friendly force 
protection, risk to own protection. II – Critical 

Weapon incapable of acquiring and 
striking the target Cost of Weapon III – Marginal / Moderate 

Danger to the airframe when 
deploying a weapon out of proper 
delivery parameters 

Loss of Airframe, Loss of Aircrew. I – Catastrophic 

Weapon could possibly fall on 
undesired target 

Blue on White (Neutral) Collateral 
Damage II – Critical 

Weapon could possibly fall on 
friendly forces 

Blue on Blue (Friendly Fire) 
Casualty I – Catastrophic 

In
ab

ili
ty

 to
 p

re
ve

nt
 w

ea
po

ns
 

re
le

as
e 

ou
ts

id
e 

of
 th

e 
w

ea
po

n’
s 

en
ve

lo
pe

 

Resulting lack of sufficient 
weapons to complete mission 

Inability to complete mission 
tasking, risk to friendly force 
protection, risk to own protection. 

II – Critical 

Cost of Weapon III – Marginal / Moderate 

In
ab

ili
ty

 
to

 fu
se

 
w

ea
po

n 
– 

D
ea

d 
Fu

se
 

Weapon not detonating on target Inability to complete mission 
tasking, risk to friendly force 
protection, risk to own protection. 

II – Critical 

Loss of Airframe, Loss of Aircrew I – Catastrophic 
Weapon could inadvertently 
detonate close to delivery aircraft 

Inability to complete mission 
tasking, risk to friendly force 
protection, risk to own protection. 

II – Critical 

Cost of Weapon III – Marginal / Moderate 

W
ea

po
n 

fu
si

ng
 to

 
de

to
na

te
 to

o 
ea

rly
 

af
te

r w
ea

po
n’

s 
re

le
as

e 

Weapon not detonating on target Inability to complete mission 
tasking, risk to friendly force 
protection, risk to own protection. 

II – Critical 

Inability to complete mission 
tasking, risk to friendly force 
protection, risk to own protection. 

II – Critical 

Inability to control aircraft – Loss 
of Airframe, Loss of Aircrew I – Catastrophic 

Significant damage to vulnerable 
aviation software systems on the 
data–bus 

III – Marginal / Moderate 

Si
gn

al
 in

co
m

pa
tib

ili
ty

 / 
fe

ed
ba

ck
 to

 th
e 

A
irc

ra
ft 

D
at

a–
B

us
 Aviation Data–Bus unable to 

process flight data 

Minor damage to vulnerable 
aviation software systems on the 
data–bus 

IV – Negligible 

Table 22 WACSS Initial Safety Assessment Table 
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The example Initial Safety Assessment Table demonstrated in Table 22 serves as 

an illustration to the dissertation model in Chapter V.E.2 and process Step 4. Action 1., 

and refinement to Table 20. 

2. INITIAL PROCESS IDENTIFICATION 

 
ID Title Description Relations 

P1 Weapon Data Processor Process of raw Weapons 
status and configuration data 
for use on the WACSS. 

From I1, I2, I3; to 
O1, 

P2 Aircraft Data Processor Process of Aircraft status 
and configuration data for 
use on the WACSS. 

From I4, I5; to O2 

P3 System Data Processor Process of refined aircraft / 
weapon status and 
configuration data for use on 
the WACSS and Aircraft 
Data–Bus. 

From I6, I7, I10; to 
O3, O4 

P4 User Input / System 
Feedback Processor 

Process of user inputs for 
menu selection, 
configuration changes, and 
launch commands. 

From I8, I9, I14; 
to O5, O6, O7, O8 

P5 Weapon Configuration 
Change Processor  

Process of Configuration 
Command Changes; verify 
that changes are in 
compliance and within 
limits of the weapon and 
aircraft 

From I11; to O9, 
O10 

P6 System Display Processor Process of data for display, 
as per user and system 
requests / requirements. 

From I12; to O11 

P7 Weapon Launch / 
Deployment Processor 

Process of Launch 
Command; verify that 
weapon and aircraft are 
within parameters. 

From I13; to O12, 
O13 

Table 23 WACSS Initial Process Identification 

The example Initial Process Identification Table demonstrated in Table 23 serves 

as an illustration to the dissertation model in Chapter V.E.1 and process Step 3. Action 2. 
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ID Description Relations 
I1 Raw input from the Weapon regarding type and 

configuration.  Input includes data on the specific type and 
model of the weapon as well as configuration 
modifications and additions to the weapon.  Values are 
static for the weapon once loaded. 

From Weapon; 
to P1 

I2 Raw input from the Weapon regarding status.  Input 
includes feedback of weapons arming, targeting, and 
detonation data.   

From Weapon; 
to P1 

I3 Raw input from the Weapon’s Rack regarding rack 
configuration.  Input includes feedback from the weapon 

From Weapon’s 
Rack; to P1 

I4 Raw input from Aircraft regarding status and configuration 
(non–flight) 

From Aircraft; to 
P2 

I5 Raw input from Aircraft regarding flight parameters and 
orientation 

From Aircraft; to 
P2 

I6 Processed input of Weapons status and configuration From O1; to P3 
I7 Processed input from Aircraft regarding flight parameters From O2; to P3 
I8 Consolidated aircraft / weapon status and configuration 

data for use on the WACSS 
From O4; to P4 

I9 User inputs, menu selections, configuration changes, and 
launch commands 

From User to 
System Input; to 
P4 

I10 Processed user inputs, weapons and aircraft data, resulting 
in changes to weapon and aircraft data  

From O5; to P3  

I11 Processed user input commands reflecting changes in the 
weapon’s configuration 

From O6; to P5 

I12 Processed user input and system commands reflecting 
changes in the WACSS and aircraft display systems 

From O7; to P6 

I13 Processed user input commands to launch or deploy the 
weapon 

From O8; to P7 

I14 Data feedback from command to launch the weapon From O13; to P4 
I15 Data feedback from requested changes to the weapon 

configuration 
From O9; to P4 

Table 24 WACSS Initial Input Identification
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ID Description Relations 
O1 Processed output of Weapon’s status and configuration From P1; to I6 
O2 Processed output of Aircraft’s status and configuration From P2; to I7 
O3 Consolidated output of Aircraft / Weapon status and 

configuration for the aircraft / weapon status and 
configuration data for use on the Aircraft Data–Bus. 

From P3; to 
Aircraft Data–
Bus 

O4 Consolidated output of Aircraft / Weapon status and 
configuration for the aircraft / weapon status and 
configuration data for use on the WACSS. 

From P3; to I8 

O5 Processed user inputs, weapons and aircraft data, resulting 
in changes to weapon and aircraft data 

From P4; to I10 

O6 Processed user input commands reflecting changes in the 
weapon’s configuration 

From P4; to I11 

O7 Processed user input and system commands reflecting 
changes in the WACSS and aircraft display systems 

From P4; to I12 

O8 Processed user input commands to launch or deploy the 
weapon 

From P4; to I13 

O9 Data feedback from requested changes to the weapon 
configuration 

From P5; to I15 

O10 Weapon change configuration commands  From P5; to 
Weapon 

O11 Processed WACSS display commands  From P6; to 
Display System 

O12 Weapon launch or deployment commands From P7; to 
Command 
Launch 

O13 Data feedback from weapon launch or deployment 
commands 

From P7; to I14 

Table 25 WACSS Initial Output Identification 

ID Description Relations 
L1 Limit value to Open / Closed In line with I3 

Table 26 WACSS Initial Limit Identification 

The example Initial Input, Output, and Limit Identification Table demonstrated in 

Table 24, Table 25, and Table 26 serve as an illustration to the dissertation model in 

Chapter V.E.1 and process Step 3. Action 2. 
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3. INITIAL PROCESS MAP 

 

Figure 21 WACSS Initial Process Flow Depiction 
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The example WACSS Initial Process Flow Depiction demonstrated in Figure 21 

serves as an illustration to the dissertation model in Chapter V.E.1 and process Step 3. 

Action 3. 

ID Failure ID Malfunction 

F1 
Failure in the Aircraft Data–Bus Output 
– O3 

F2 
Failure in the processing of system data 
in P3 

M1 
Signal incompatibility / 
feedback to the Aircraft 
Data–Bus 

F3 
Failure in weapon’s configuration 
change logic – P5f 

F4 
Failure in weapon’s signals regarding 
current status of the weapon – I2, P1, O1, 
I6, P3 

F5 
Failure in weapon’s signals regarding 
the configuration of the weapon – I1, P1, 
O1, I6, P3 

F6 
Failure in system data signals / transfer 
– O4, I8, P4, O6, I11 

F7 
Failure / incompatibility in Weapon’s 
configuration signals in O10 

M2 
Weapon fusing to detonate 
too early after weapon’s 
release 

F8 
Failure in weapon’s configuration 
change logic – P5 

F9 
Failure / incompatibility in Weapon’s 
configuration signals in O10 

F10 
Failure in launch logic to deploy 
weapon with fusing.  – P7  

F11 
Failure in Weapon’s signal regarding 
weapon’s configuration and status – I1, 
I2, P1, O1, I6, P3 

M3 
Inability to fuse weapon – 
Dead Fuse 

F12 
Failure in Weapon’s data signal 
regarding weapon’s configuration and 
status – I1, I2, P1, O1, I6, P3 

F13 
Failure in Aircraft data signal regarding 
flight and non–flight data – I4, I5, P2, O2, 
I7, P3 

F14 
Failure in weapons launch / deployment 
logic to validate weapon’s envelope – P7 

F15 
Failure in the weapons launch signal – 
P7, O12 

F16  
Failure in system data signals / transfer 
– O4, I8, P4, O8, I13 

M4 
Inability to prevent weapons 
release outside of the 
weapon’s envelope 

F17 
Failure in weapons launch / deployment 
logic to select the proper weapon – P7 

F18 
Failure in the system to comprehend 
which weapon was selected – P4, I9, O8, 
I13, P7 

M5 
Drop incorrect weapon from 
pylon 

Table 27 WACSS Initial Failures to Malfunction Identification 
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The example Initial Failure to Malfunction Identification Table demonstrated in 

Table 27 serves as an illustration to the dissertation model in Chapter V.E.2 and process 

Step 4. Action 1., and refinement to Table 20 and Table 22. 
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4. INITIAL FAILURE PROCESS MAP 

 

Figure 22 WACSS Initial Failure Depiction 
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The example WACSS Initial Failure Depiction demonstrated in Figure 22 serves 

as an illustration to the dissertation model in Chapter V.E.2 and process Step 4. Action 2. 

5. PROCESS ASSESSMENT 

Probability of System Execution 
 
Let Pse = 1.0 or 100%.  The system will execute 100% of the time. 
 
Where: 

• The time sample = the total flight time of the aircraft, from launch to land. 
• The flight mission consists of weapons employment 

 
Frequency of Execution 
 

Frequency Definition Probability 
ALWAYS Objects are executed constantly during 

the sample time life of the system. 
1.00 

FREQUENT Objects are executed often in the sample 
time life of the system. 

0.90 

LIKELY Objects are executed several times in the 
sample time life of the system. 

0.75 

PERIODICALLY  Objects are executed at regular intervals 
in the sample time life of the system. 

0.66 

OCCASIONAL Objects are executed in the sample time 
life of the system. 

0.50 

SELDOM Objects are executed seldom in the 
sample time life of the system. 

0.25 

SPORADICALLY Objects are executed infrequently or at 
scattered instances within the sample time 
life of the system. 

0.15 

UNLIKELY Objects are so unlikely to execute it can 
be assumed that it will not occur in the 
sample time life of the system. 

0.05 

NEVER Objects are assured never to execute 
during the sample time life of the system. 

0.00 

Table 28 WACSS Execution Probability Definition Table 

The example Execution Probability Definitions demonstrated in Table 28 serves 

as an illustration to the dissertation model in Chapter V.E.3.b and process Step 5. Action 

2. 
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Frequency of Failure 
 

Frequency Definition Probability x10–5

ALWAYS Objects will fail each time they are 
executed. 

1.00 

FREQUENT Objects will most likely fail when 
executed. 

0.90 

LIKELY Objects will likely fail when executed. 0.75 
PERIODICALLY  Objects will periodically fail when 

executed. 
0.66 

OCCASIONAL Objects will occasionally fail when 
executed. 

0.50 

SELDOM Objects will seldom fail when executed. 0.25 
SPORADICALLY Objects will fail sporadically when they 

are executed. 
0.15 

UNLIKELY Objects are unlikely to fail when 
executed. 

0.05 

NEVER Objects will never fail when executed. 0.00 

Table 29 WACSS Object Failure Probability Definition Table 

The example Object Failure Probability Definition Table demonstrated in Table 

29 serves as an illustration to the dissertation model in Chapter V.E.3.b and process Step 

5. Action 4. 
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6. OBJECT EXECUTION PROBABILITY 

 

Figure 23 WACSS Object Execution Probability Map 
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The example Object Execution Probability Map demonstrated in Figure 23 serves 

as an illustration to the dissertation model in Chapter V.E.3.b and process Step 5. Action 

3. 
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7. OBJECT FAILURE PROBABILITY 

Failure ID 
Intermittent 

Failure 
Prob Pf  x10–5 

Partial 
Failure 

Prob Pf  x10–5 

Complete 
Failure 

Prob Pf  x10–5 

Cataclysmic 
Failure 

Prob Pf  x10–5 

Object 
ID 

Execution 
Prob Pe 

Malfunction 
ID 

F1 2.5000 1.2500 0.6250 0.3125 O3 0.40 M1
F2 2.0000 1.0000 0.5000 0.2500 P3 0.66 M1
F3 0.8000 0.4000 0.2000 0.1000 P5 0.25 M2
F4.1 1.5000 0.7500 0.3750 0.1875 I2 0.66 M2
F4.2 1.0000 0.5000 0.2500 0.1250 P1 0.66 M2
F4.3 0.5000 0.2500 0.1250 0.0625 O1 0.66 M2
F4.4 0.5000 0.2500 0.1250 0.0625 I6 0.25 M2
F4.5 1.2000 0.6000 0.3000 0.1500 P3 0.66 M2
F5.1 1.8000 0.9000 0.4500 0.2250 I1 0.66 M2
F5.2 1.0000 0.5000 0.2500 0.1250 P1 0.66 M2
F5.3 0.5000 0.2500 0.1250 0.0625 O1 0.66 M2
F5.4 0.5000 0.2500 0.1250 0.0625 I6 0.25 M2
F5.5 1.2000 0.6000 0.3000 0.1500 P3 0.66 M2
F6.1 0.5000 0.2500 0.1250 0.0625 O4 0.40 M2
F6.2 0.5000 0.2500 0.1250 0.0625 I8 0.40 M2
F6.3 0.5000 0.2500 0.1250 0.0625 P4 0.25 M2
F6.4 0.5000 0.2500 0.1250 0.0625 O6 0.25 M2
F6.5 0.5000 0.2500 0.1250 0.0625 I11 0.25 M2
F6.6 0.2000 0.1000 0.0500 0.0250 O5 0.10 M2
F6.7 0.2000 0.1000 0.0500 0.0250 I10 0.10 M2
F7 0.8000 0.4000 0.2000 0.1000 O10 0.10 M2
F8 1.0000 0.5000 0.2500 0.1250 P5 0.25 M3
F9 0.8000 0.4000 0.2000 0.1000 O10 0.10 M3
F10 1.2000 0.6000 0.3000 0.1500 P7 0.10 M3
F11.1 1.8000 0.9000 0.4500 0.2250 I1 0.66 M3
F11.2 1.5000 0.7500 0.3750 0.1875 I2 0.66 M3
F11.3 1.4000 0.7000 0.3500 0.1750 P1 0.66 M3
F11.4 0.5000 0.2500 0.1250 0.0625 O1 0.66 M3
F11.5 0.5000 0.2500 0.1250 0.0625 I6 0.66 M3
F11.6 1.2000 0.6000 0.3000 0.1500 P3 0.66 M3
F12.1 1.8000 0.9000 0.4500 0.2250 I1 0.66 M4
F12.2 1.5000 0.7500 0.3750 0.1875 I2 0.66 M4
F12.3 1.4000 0.7000 0.3500 0.1750 P1 0.66 M4
F12.4 0.5000 0.2500 0.1250 0.0625 O1 0.66 M4
F12.5 0.5000 0.2500 0.1250 0.0625 I6 0.66 M4
F12.6 1.4000 0.7000 0.3500 0.1750 P3 0.66 M4
F13.1 1.5000 0.7500 0.3750 0.1875 I4 0.90 M4
F13.2 1.5000 0.7500 0.3750 0.1875 I5 0.90 M4
F13.3 1.0000 0.5000 0.2500 0.1250 P2 0.66 M4
F13.4 0.5000 0.2500 0.1250 0.0625 O2 0.66 M4
F13.5 0.5000 0.2500 0.1250 0.0625 I7 0.66 M4
F13.6 1.4000 0.7000 0.3500 0.1750 P3 0.66 M4
F14 1.2000 0.6000 0.3000 0.1500 P7 0.10 M4
F15.1 0.5000 0.2500 0.1250 0.0625 P7 0.10 M4
F15.2 0.8000 0.4000 0.2000 0.1000 O12 0.07 M4
F16.1 0.5000 0.2500 0.1250 0.0625 O4 0.40 M4
F16.2 0.5000 0.2500 0.1250 0.0625 I8 0.40 M4
F16.3 0.8000 0.4000 0.2000 0.1000 P4 0.25 M4
F16.4 0.6000 0.3000 0.1500 0.0750 O8 0.10 M4
F16.5 0.6000 0.3000 0.1500 0.0750 I13 0.10 M4
F17 1.0000 0.5000 0.2500 0.1250 P7 0.10 M5
F18.1 0.8000 0.4000 0.2000 0.1000 P4 0.25 M5
F18.2 1.9000 0.9500 0.4750 0.2375 I9 0.25 M5
F18.3 0.5000 0.2500 0.1250 0.0625 O8 0.10 M5
F18.4 0.5000 0.2500 0.1250 0.0625 I13 0.10 M5
F18.5 1.5000 0.7500 0.3750 0.1875 P7 0.10 M5

Table 30 WACSS Failure Probability Table 
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The example Failure Probability Table demonstrated in Table 30 serves as an 

illustration to the dissertation model in Chapter V.E.3.b and process Step 5. Action 5.
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Failure ID Object ID Execution 
Prob Pe 

Conditional 
Intermittent 

Failure 
Prob Pf   x10–5 

Conditional 
Partial 
Failure 

Prob Pf  x10–5 

Conditional 
Complete 
Failure 

Prob Pf  x10–5 

Conditional 
Cataclysmic 

Failure 
Prob Pf  x10–5 

Malfunction 
ID 

F1 O3 0.40 1.0000 0.5000 0.2500 0.1250 M1
F2 P3 0.66 1.3200 0.6600 0.3300 0.1650 M1
F3 P5 0.25 0.2000 0.1000 0.0500 0.0250 M2
F4.1 I2 0.66 0.9900 0.4950 0.2475 0.1238 M2
F4.2 P1 0.66 0.6600 0.3300 0.1650 0.0825 M2
F4.3 O1 0.66 0.3300 0.1650 0.0825 0.0413 M2
F4.4 I6 0.25 0.1250 0.0625 0.0313 0.0156 M2
F4.5 P3 0.66 0.7920 0.3960 0.1980 0.0990 M2
F5.1 I1 0.66 1.1880 0.5940 0.2970 0.1485 M2
F5.2 P1 0.66 0.6600 0.3300 0.1650 0.0825 M2
F5.3 O1 0.66 0.3300 0.1650 0.0825 0.0413 M2
F5.4 I6 0.25 0.1250 0.0625 0.0313 0.0156 M2
F5.5 P3 0.66 0.7920 0.3960 0.1980 0.0990 M2
F6.1 O4 0.40 0.2000 0.1000 0.0500 0.0250 M2
F6.2 I8 0.40 0.2000 0.1000 0.0500 0.0250 M2
F6.3 P4 0.25 0.1250 0.0625 0.0313 0.0156 M2
F6.4 O6 0.25 0.1250 0.0625 0.0313 0.0156 M2
F6.5 I11 0.25 0.1250 0.0625 0.0313 0.0156 M2
F6.6 O5 0.10 0.0500 0.0250 0.0125 0.0063 M2
F6.7 I10 0.10 0.0500 0.0250 0.0125 0.0063 M2
F7 O10 0.10 0.0800 0.0400 0.0200 0.0100 M2
F8 P5 0.25 0.2500 0.1250 0.0625 0.0313 M3
F9 O10 0.10 0.0800 0.0400 0.0200 0.0100 M3
F10 P7 0.10 0.1200 0.0600 0.0300 0.0150 M3
F11.1 I1 0.66 1.1880 0.5940 0.2970 0.1485 M3
F11.2 I2 0.66 0.9900 0.4950 0.2475 0.1238 M3
F11.3 P1 0.66 0.9240 0.4620 0.2310 0.1155 M3
F11.4 O1 0.66 0.3300 0.1650 0.0825 0.0413 M3
F11.5 I6 0.66 0.3300 0.1650 0.0825 0.0413 M3
F11.6 P3 0.66 0.7920 0.3960 0.1980 0.0990 M3
F12.1 I1 0.66 1.1880 0.5940 0.2970 0.1485 M4
F12.2 I2 0.66 0.9900 0.4950 0.2475 0.1238 M4
F12.3 P1 0.66 0.9240 0.4620 0.2310 0.1155 M4
F12.4 O1 0.66 0.3300 0.1650 0.0825 0.0413 M4
F12.5 I6 0.66 0.3300 0.1650 0.0825 0.0413 M4
F12.6 P3 0.66 0.9240 0.4620 0.2310 0.1155 M4
F13.1 I4 0.90 1.3500 0.6750 0.3375 0.1688 M4
F13.2 I5 0.90 1.3500 0.6750 0.3375 0.1688 M4
F13.3 P2 0.66 0.6600 0.3300 0.1650 0.0825 M4
F13.4 O2 0.66 0.3300 0.1650 0.0825 0.0413 M4
F13.5 I7 0.66 0.3300 0.1650 0.0825 0.0413 M4
F13.6 P3 0.66 0.9240 0.4620 0.2310 0.1155 M4
F14 P7 0.10 0.1200 0.0600 0.0300 0.0150 M4
F15.1 P7 0.10 0.0500 0.0250 0.0125 0.0063 M4
F15.2 O12 0.07 0.0560 0.0280 0.0140 0.0070 M4
F16.1 O4 0.40 0.2000 0.1000 0.0500 0.0250 M4
F16.2 I8 0.40 0.2000 0.1000 0.0500 0.0250 M4
F16.3 P4 0.25 0.2000 0.1000 0.0500 0.0250 M4
F16.4 O8 0.10 0.0600 0.0300 0.0150 0.0075 M4
F16.5 I13 0.10 0.0600 0.0300 0.0150 0.0075 M4
F17 P7 0.10 0.1000 0.0500 0.0250 0.0125 M5
F18.1 P4 0.25 0.2000 0.1000 0.0500 0.0250 M5
F18.2 I9 0.25 0.4750 0.2375 0.1188 0.0594 M5
F18.3 O8 0.10 0.0500 0.0250 0.0125 0.0063 M5
F18.4 I13 0.10 0.0500 0.0250 0.0125 0.0063 M5
F18.5 P7 0.10 0.1500 0.0750 0.0375 0.0188 M5

Table 31 WACSS Conditional Failure Probability Table 

The example Conditional Failure Probability demonstrated in Table 31 serves as 

an illustration to the dissertation model in Chapter V.E.3.b and process Step 5. Action 4. 
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8. SYSTEM HAZARD FLOW AND PROBABILITY 

 

Figure 24 WACSS M1 Malfunction Process Flow 
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M1 – Single Incompatibility / feedback to the Aircraft Data–Bus 
 
Case 1: 
 
Failure (F1) of Output 3 (O3), resulting in a failure of the Aircraft Data–Bus and 
Malfunction 1 (M1) 
 
F1^O3 → M1 

 
Assume: 

Pe O3 0.40 
Pf Intermittent F1 2.5000x10–5 

Pf Partial F1 1.2500x10–5 

Pf Complete F1 0.6250x10–5 
Pf Cataclysmic F1 0.3125x10–5 

 
Intermittent (2.5000x10–5 * 0.40) = 1.0000x10–5 ∴ 
 
Partial (1.2500x10–5 * .40) = 0.5000x10–5 ∴ 
 
Complete (0.6250x10–5 * .40) = 0.2500x10–5 ∴ 
 
Cataclysmic (0.3125x10–5 * .40) = 0.1250x10–5 ∴ 
 
There is a 1.0000x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.5000x10–5 probability of a partial failure, 0.2500x10–5 probability of complete failure, 
and a 0.1250x10–5 probability of a cataclysmic failure during the output operation of O3, 
generating a signal incompatibility or feedback error to the Aircraft Data–Bus. 
 
Case 2: 
 
Failure (F2) of Process 3 (P3), through to O3, resulting in a failure of the Aircraft Data–
Bus and Malfunction 1 (M1) 
 
F2^P3 {[O3]} → M1 
 
Assume: 

Pe P3 0.66 
Pe O3 ∪ P3 0.95 
Pf Intermittent F2 2.0000x10–5 

Pf Partial F2 1.0000x10–5 

Pf Complete F2 0.5000x10–5 
Pf Cataclysmic F2 0.2500x10–5 

 
Intermittent (2.0000x10–5 * 0.66) * (0.95) = 1.2540x10–5 ∴ 
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Partial (1.0000x10–5 * .66) * (0.95) = 0.6270x10–5 ∴ 
 
Complete (0.5000x10–5 * .66) * (0.95) = 0.3135x10–5 ∴ 
 
Cataclysmic (0.2500x10–5 * .66) * (0.95) = 0.1568x10–5 ∴ 
 
There is a 1.2540x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.6270x10–5 probability of a partial failure, a 0.3135x10–5 probability of complete failure, 
and a 0.1568x10–5 probability of a cataclysmic failure during the operation of P3, 
generating a signal incompatibility or feedback error to the Aircraft Data–Bus. 
 
Summary: 
 
Failure in Case 1 or Failure in Case 2, resulting in a failure of the Aircraft Data–Bus and 
Malfunction 1 (M1) 
 
PM1 = {PCase 1 or PCase 2} 
Intermittent PM1 = 1.0000x10–5 + 1.2540x10–5 = 2.2540x10–5 
Partial PM1 = 0.5000x10–5 + 0.6270x10–5 = 1.1270x10–5 
Complete PM1 = 0.2500x10–5 + 0.3135x10–5 = 0.5635x10–5 
Cataclysmic PM1 = 0.1250x10–5 + 0.1568x10–5 = 0.2818x10–5 
 
PM1 Total = PM1 Intermittent + PM1 Partial + PM1 Complete + PM1 Cataclysmic 
 
PM1 Total = 2.2540x10–5 + 1.1270x10–5 + 0.5635x10–5 + 0.2818x10–5 
PM1 Total = 4.2263x10–5 

 
There is a 4.2263x10–5 probability that the WACSS will experience a safety–related 
malfunction and hazardous event during system operation, associated with a signal 
incompatibility or feedback error to the Aircraft Data–Bus. 



353 

 

Figure 25 WACSS M2 Malfunction Process Flow 
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M2 – Weapon fusing to detonate too early after weapon’s release 
 
Case 1: 
 
Failure (F3) of Process 5 (P5), through O10, resulting in a failure of weapon fusing and 
Malfunction 2 (M2) 
 
F3^P5 {[O10]} → M2 
 
Assume: 

Pe P5 0.25 
Pe O10 ∪ P5 0.95 
Pf Intermittent F3 0.8000x10–5 

Pf Partial F3 0.4000x10–5 

Pf Complete F3 0.2000x10–5 
Pf Cataclysmic F3 0.1000x10–5 

 
Intermittent (0.8000x10–5 * 0.25) * (0.95) = 0.1900x10–5 ∴ 
 
Partial (0.4000x10–5 * .25) * (0.95) = 0.0950x10–5 ∴ 
 
Complete (0.2000x10–5 * .25) * (0.95) = 0.0475x10–5 ∴ 
 
Cataclysmic (0.1000x10–5 * .25) * (0.95) = 0.0238x10–5 ∴ 
 
There is a 0.1900x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.0950x10–5 probability of a partial failure, 0.0475x10–5 probability of complete failure, 
and a 0.0238x10–5 probability of a cataclysmic failure during the output operation of P5 
(The Weapon Configuration Change Processor), causing the weapon to fuse and detonate 
too early after weapon release 
 
Case 2: 
 
Failure (F4.1) of Input 2 (I2), and/or Failure (F4.2) of Process 1 (P1), and/or Failure (F4.3) of 
Output 1 (O1), and/or Failure (F4.4) of Input 6 (I6), and/or Failure (F4.5) of Process 3 (P3), 
through to O4, I8, P4, O6, I11, P5, and O10, resulting in a failure of weapon fusing and 
Malfunction 2 (M2) 
 
( F4.1^I2 {[P1, O1, I6, P3]} or F4.2^P1 {[O1, I6, P3]} or F4.3^O1 {[I6, P3]} or F4.4^I6 {[P3]} or 
F4.5^P3 ) {[O4, I8, P4, O6, I11, P5, O10]} → M2 
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Assume: 
Pe I2 0.66 
Pe P1 0.66 
Pe O1 0.66 
Pe I6 0.25 
Pe P3 0.66 
∑Pe {O4, I8, P4, O6, I11, P5, O10} ∪ (I2, P1, 
O1, I6, P3) 0.6983 
∑Pe {P1, O1, I6, P3} ∪ I2 0.8145 
∑Pe {O1, I6, P3} ∪ P1 0.8574 
∑Pe {I6, P3} ∪ O1 0.9025 
Pe P3 ∪ I6 0.95 
Pf Intermittent F4.1 1.5000x10–5 

Pf Partial F4.1 0.7500x10–5 

Pf Complete F4.1 0.3750x10–5 
Pf Cataclysmic F4.1 0.1875x10–5 
Pf Intermittent F4.2 1.0000x10–5 

Pf Partial F4.2 0.5000x10–5 

Pf Complete F4.2 0.2500x10–5 
Pf Cataclysmic F4.2 0.1250x10–5 
Pf Intermittent F4.3 0.5000x10–5 

Pf Partial F4.3 0.2500x10–5 

Pf Complete F4.3 0.1250x10–5 
Pf Cataclysmic F4.3 0.0625x10–5 
Pf Intermittent F4.4 0.5000x10–5 

Pf Partial F4.4 0.2500x10–5 

Pf Complete F4.4 0.1250x10–5 
Pf Cataclysmic F4.4 0.0625x10–5 
Pf Intermittent F4.5 1.2000x10–5 

Pf Partial F4.5 0.6000x10–5 

Pf Complete F4.5 0.3000x10–5 
Pf Cataclysmic F4.5 0.1500x10–5 
 

 
Intermittent (((1.5000x10–5 * 0.66) * (0.8145)) + ((1.0000x10–5 * 0.66) * (0.8574)) + 
((0.5000x10–5 * 0.66) * (0.9025)) + ((0.5000x10–5 * 0.25) * (0.95)) + (1.2000x10–5 * 
0.66)) * (0.6983) = 
 
(0.8064x10–5 + 0.5659x10–5 + 0.2978x10–5 + 0.1188x10–5 + 0.7920x10–5) * (0.6983) = 
1.8022x10–5 ∴ 
 
Partial (((0.7500x10–5 * 0.66) * (0.8145)) + ((0.5000x10–5 * 0.66) * (0.8574)) + 
((0.2500x10–5 * 0.66) * (0.9025)) + ((0.2500x10–5 * 0.25) * (0.95)) + (0.6000x10–5 * 
0.66)) * (0.6983) = 
 
(0.4032x10–5 + 0.2821x10–5 + 0.1489x10–5 + 0.0594x10–5 + 0.3960x10–5) * (0.6983) = 
0.9005x10–5 ∴ 
 
Complete (((0.3750x10–5 * 0.66) * (0.8145)) + ((0.2500x10–5 * 0.66) * (0.8574)) + 
((0.1250x10–5 * 0.66) * (0.9025)) + ((0.1250x10–5 * 0.25) * (0.95)) + (0.3000x10–5 * 
0.66)) * (0.6983) = 
 
(0.2016x10–5 + 0.1415x10–5 + 0.0745x10–5 + 0.0297x10–5 + 0.1980x10–5) * (0.6983) = 
0.4506x10–5 ∴ 
 
Cataclysmic (((0.1875x10–5 * 0.66) * (0.8145)) + ((0.1250x10–5 * 0.66) * (0.8574)) + 
((0.0625x10–5 * 0.66) * (0.9025)) + ((0.0625x10–5 * 0.25) * (0.95)) + (0.1500x10–5 * 
0.66)) * (0.6983) = 
 
(0.1008x10–5 + 0.0707x10–5 + 0.0372x10–5 + 0.0148x10–5 + 0.0990x10–5) * (0.6983) = 
0.2252x10–5 ∴ 
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There is a 1.8022x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.9005x10–5 probability of a partial failure, a 0.4506x10–5 probability of complete failure, 
and a 0.2252x10–5 probability of a cataclysmic failure during the operation of I2, P1, O1, 
I6, and/or P3 as a failure in the weapon’s signals regarding the current status of the 
weapon, causing the weapon to fuse and detonate too early after weapon release 
 
Case 3: 
 
Failure (F5.1) of Input 1 (I1), and/or Failure (F5.2) of Process 1 (P1), and/or Failure (F5.3) of 
Output 1 (O1), and/or Failure (F5.4) of Input 6 (I6), and/or Failure (F5.5) of Process 3 (P3), 
through to O4, I8, P4, O6, I11, P5, and O10, resulting in a failure of weapon fusing and 
Malfunction 2 (M2) 
 
( F5.1^I1 {[P1, O1, I6, P3]} or F5.2^P1 {[O1, I6, P3]} or F5.3^O1 {[I6, P3]} or F5.4^I6 {[P3]} or 
F5.5^P3 ) {[O4, I8, P4, O6, I11, P5, O10]} → M2 
 
Assume: 
Pe I1 0.66 
Pe P1 0.66 
Pe O1 0.66 
Pe I6 0.25 
Pe P3 0.66 
∑Pe {O4, I8, P4, O6, I11, P5, O10} ∪ (I1, P1, 

O1, I6, P3) 0.6983 
∑Pe {P1, O1, I6, P3} ∪ I2 0.8145 
∑Pe {O1, I6, P3} ∪ P1 0.8574 
∑Pe {I6, P3} ∪ O1 0.9025 
Pe P3 ∪ I6 0.95 
Pf Intermittent F5.1 1.5000x10–5 

Pf Partial F5.1 0.7500x10–5 

Pf Complete F5.1 0.3750x10–5 
Pf Cataclysmic F5.1 0.1875x10–5 
Pf Intermittent F5.2 1.0000x10–5 

Pf Partial F5.2 0.5000x10–5 

Pf Complete F5.2 0.2500x10–5 
Pf Cataclysmic F5.2 0.1250x10–5 
Pf Intermittent F5.3 0.5000x10–5 

Pf Partial F5.3 0.2500x10–5 

Pf Complete F5.3 0.1250x10–5 
Pf Cataclysmic F5.3 0.0625x10–5 
Pf Intermittent F5.4 0.5000x10–5 

Pf Partial F5.4 0.2500x10–5 

Pf Complete F5.4 0.1250x10–5 
Pf Cataclysmic F5.4 0.0625x10–5 
Pf Intermittent F5.5 1.2000x10–5 

Pf Partial F5.5 0.6000x10–5 

Pf Complete F5.5 0.3000x10–5 
Pf Cataclysmic F5.5 0.1500x10–5 
 

 
Intermittent (((1.5000x10–5 * 0.66) * (0.8145)) + ((1.0000x10–5 * 0.66) * (0.8574)) + 
((0.5000x10–5 * 0.66) * (0.9025)) + ((0.5000x10–5 * 0.25) * (0.95)) + (1.2000x10–5 * 
0.66)) * (0.6983) = 
 
(0.8064x10–5 + 0.5659x10–5 + 0.2978x10–5 + 0.1188x10–5 + 0.7920x10–5) * (0.6983) = 
1.8022x10–5 ∴ 
 
Partial (((0.7500x10–5 * 0.66) * (0.8145)) + ((0.5000x10–5 * 0.66) * (0.8574)) + 
((0.2500x10–5 * 0.66) * (0.9025)) + ((0.2500x10–5 * 0.25) * (0.95)) + (0.6000x10–5 * 
0.66)) * (0.6983) = 
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(0.4032x10–5 + 0.2821x10–5 + 0.1489x10–5 + 0.0594x10–5 + 0.3960x10–5) * (0.6983) = 
0.9005x10–5 ∴ 
 
Complete (((0.3750x10–5 * 0.66) * (0.8145)) + ((0.2500x10–5 * 0.66) * (0.8574)) + 
((0.1250x10–5 * 0.66) * (0.9025)) + ((0.1250x10–5 * 0.25) * (0.95)) + (0.3000x10–5 * 
0.66)) * (0.6983) = 
 
(0.2016x10–5 + 0.1415x10–5 + 0.0745x10–5 + 0.0297x10–5 + 0.1980x10–5) * (0.6983) = 
0.4506x10–5 ∴ 
 
Cataclysmic (((0.1875x10–5 * 0.66) * (0.8145)) + ((0.1250x10–5 * 0.66) * (0.8574)) + 
((0.0625x10–5 * 0.66) * (0.9025)) + ((0.0625x10–5 * 0.25) * (0.95)) + (0.1500x10–5 * 
0.66)) * (0.6983) = 
 
(0.1008x10–5 + 0.0707x10–5 + 0.0372x10–5 + 0.0148x10–5 + 0.0990x10–5) * (0.6983) = 
0.2252x10–5 ∴ 
 
There is a 1.8022x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.9005x10–5 probability of a partial failure, a 0.4506x10–5 probability of complete failure, 
and a 0.2252x10–5 probability of a cataclysmic failure during the operation of I1, P1, O1, 
I6, and/or P3 as a failure in the weapon’s signals regarding the configuration of the 
weapon, causing the weapon to fuse and detonate too early after weapon release 
 
Case 4: 
 
Failure (F6.1) of Output 4 (O4), and/or Failure (F6.2) of Input 8 (I8), and/or Failure (F6.3) of 
Process 4 (P4), and/or Failure (F6.4) of Output 6 (O6), and/or Failure (F6.5) of Input 11 (I11), 
through to P5, and O10, resulting in a failure of weapon fusing and Malfunction 2 (M2) 
 
( F6.1^O4 {[I8, P4, O6, I11]} or F6.2^I8 {[P4, O6, I11]} or F6.3^P4 {[O6, I11]} or F6.4^O6 {[I11]} 
or F6.5^I11 ) {[P5, O10]} → M2 
 
Note P4 includes the Loop Process Flow from O5 through I10 and back into P3, triggered 
by failure type 6.  For the purpose of this example, it shall be assumed that the loop cycle 
shall occur 100 times during the examination period. 
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Assume: 
Pe O4 0.40 
Pe I8 0.40 
Pe P4 0.25 
Pe O6 0.25 
Pe I11 0.25 
∑Pe {O5, I10} Loop Case 0.10 
∑Pe {P5, O10} ∪ (O4, I8, P4, O6, I11)
 0.9025 
∑Pe {I8, P4, O6, I11} ∪ O4 0.8145 
∑Pe {P4, O6, I11} ∪ I8 0.8574 
∑Pe {O6, I11} ∪ P4 0.9025 
Pe I11 ∪ O6 0.95 
Pf Intermittent F6.1 0.5000x10–5 

Pf Partial F6.1 0.2500x10–5 

Pf Complete F6.1 0.1250x10–5 
Pf Cataclysmic F6.1 0.0625x10–5 
Pf Intermittent F6.2 0.5000x10–5 

Pf Partial F6.2 0.2500x10–5 

Pf Complete F6.2 0.1250x10–5 
Pf Cataclysmic F6.2 0.0625x10–5 

Pf Intermittent F6.3 0.5000x10–5 

Pf Partial F6.3 0.2500x10–5 

Pf Complete F6.3 0.1250x10–5 

Pf Cataclysmic F6.3 0.0625x10–5 
Pf Intermittent F6.4 0.5000x10–5 

Pf Partial F6.4 0.2500x10–5 

Pf Complete F6.4 0.1250x10–5 
Pf Cataclysmic F6.4 0.0625x10–5 
Pf Intermittent F6.5 0.5000x10–5 

Pf Partial F6.5 0.2500x10–5 

Pf Complete F6.5 0.1250x10–5 
Pf Cataclysmic F6.5 0.0625x10–5 

Pf Intermittent F6.6 0.5000x10–5 

Pf Partial F6.6 0.2500x10–5 

Pf Complete F6.6 0.1250x10–5 
Pf Cataclysmic F6.6 0.0625x10–5 

Pf Intermittent F6.7 0.5000x10–5 

Pf Partial F6.7 0.2500x10–5 

Pf Complete F6.7 0.1250x10–5 
Pf Cataclysmic F6.7 0.0625x10–5 

 
Loop Case Intermittent= 1 – (1 – ((0.5000x10–5 * 0.10) + (0.5000x10–5 * 0.10)))100 =  

1.0000 x 10-5 
 
Loop Case Partial = 1 – (1 – ((0.5000x10–5 * 0.10) + (0.5000x10–5 * 0.10)))100 =  

0.5000 x 10-5 
 
Loop Case Complete = 1 – (1 – ((0.5000x10–5 * 0.10) + (0.5000x10–5 * 0.10)))100 =  

0.2500 x 10-5 
 
Loop Case Cataclysmic = 1 – (1 – ((0.5000x10–5 * 0.10) + (0.5000x10–5 * 0.10)))100 =  

0.1250 x 10-5 
 
Intermittent (((0.5000x10–5 * 0.40) * (0.8145)) + ((0.5000x10–5 * 0.40) * (0.8574)) + 
((0.5000x10–5 * 0.25) * (0.9025)) + ((0.5000x10–5 * 0.25) * (0.95)) + (0.5000x10–5 * 
0.25)) * (0.9025) + 1.0000 x 10-5= 
 
(0.1629x10–5 + 0.1715x10–5 + 0.1128x10–5 + 0.1188x10–5 + 0.1250x10–5) * (0.9025) = 
1.6236x10–5 ∴ 
 
Partial (((0.2500x10–5 * 0.40) * (0.8145)) + ((0.2500x10–5 * 0.40) * (0.8574)) + 
((0.2500x10–5 * 0.25) * (0.9025)) + ((0.2500x10–5 * 0.25) * (0.95)) + (0.2500x10–5 * 
0.25)) * (0.9025) + 0.5000 x 10-5= 
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(0.0815x10–5 + 0.0857x10–5 + 0.0564x10–5 + 0.0594x10–5 + 0.0625x10–5) * (0.9025) = 
0.8118x10–5 ∴ 
 
Complete (((0.1250x10–5 * 0.40) * (0.8145)) + ((0.1250x10–5 * 0.40) * (0.8574)) + 
((0.1250x10–5 * 0.25) * (0.9025)) + ((0.1250x10–5 * 0.25) * (0.95)) + (0.1250x10–5 * 
0.25)) * (0.9025) + 0.2500 x 10-5= 
 
(0.0407x10–5 + 0.0429x10–5 + 0.0282x10–5 + 0.0297x10–5 + 0.0313x10–5) * (0.9025) = 
0.4060x10–5 ∴ 
 
Cataclysmic (((0.0625x10–5 * 0.40) * (0.8145)) + ((0.0625x10–5 * 0.40) * (0.8574)) + 
((0.0625x10–5 * 0.25) * (0.9025)) + ((0.0625x10–5 * 0.25) * (0.95)) + (0.0625x10–5 * 
0.25)) * (0.9025) + 0.1250 x 10-5= 
 
(0.0204x10–5 + 0.0214x10–5 + 0.0141x10–5 + 0.0148x10–5 + 0.0156x10–5) * (0.9025) = 
0.2029x10–5 ∴ 
 
There is a 1.6236x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.8118x10–5 probability of a partial failure, a 0.4060x10–5 probability of complete failure, 
and a 0.2029x10–5 probability of a cataclysmic failure during the operation of O4, I8, P4, 
O6, and/or I11 as a failure in system data signals transfer, causing the weapon to fuse and 
detonate too early after weapon release 
 
Case 5: 
 
Failure (F7) of Output 10 (O10) resulting in a failure of weapon fusing and Malfunction 2 
(M2) 
 
F7^O10 → M2 
 
Assume: 

Pe O10 0.10 
Pf Intermittent F7 0.8000x10–5 

Pf Partial F7 0.4000x10–5 

Pf Complete F7 0.2000x10–5 
Pf Cataclysmic F7 0.1000x10–5 

 
Intermittent (0.8000x10–5 * 0.10) = 0.0800x10–5 ∴ 
 
Partial (0.4000x10–5 * 0.10) = 0.0400x10–5 ∴ 
 
Complete (0.2000x10–5 * 0.10) = 0.0200x10–5 ∴ 
 
Cataclysmic (0.1000x10–5 * 0.10) = 0.0100x10–5 ∴ 
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There is a 0.0800x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.0400x10–5 probability of a partial failure, a 0.0200x10–5 probability of complete failure, 
and a 0.0100x10–5 probability of a cataclysmic failure during the output operation of O10 
as a failure / incompatibility in Weapon’s configuration signals, causing the weapon to 
fuse and detonate too early after weapon release 
 
Summary: 
 
Failure in Case 1, Case 2, Case 3, Case 4, or Case 5, resulting in the weapon fusing to 
detonate too early after weapon’s release and Malfunction 2 (M2) 
 
PM2 = {PCase 1 or PCase 2 or PCase 3 or PCase 4 or PCase 5} 
 
Intermittent PM2 = 0.1900x10–5 + 1.8022x10–5 + 1.8022x10–5 + 1.6236x10–5 0.0800x10–5  
= 5.4980x10–5 
Partial PM2 = 0.0950x10–5 + 0.9055x10–5 + 0.9055x10–5 + 0.5118x10–5 + 0.0400x10–5 = 
2.7578x10–5 
Complete PM2 = 0.0475x10–5 + 0.4506x10–5 + 0.4506x10–5 + 0.4060x10–5 + 0.0200x10–5 
= 1.3847x10–5 
Cataclysmic PM2 = 0.0238x10–5 + 0.2252x10–5 + 0.2252x10–5 + 0.2029x10–5 + 
0.0100x10–5 = 0.6871x10–5 
 
PM2 Total = PM2 Intermittent + PM2 Partial + PM2 Complete + PM2 Cataclysmic 
 
PM2 Total = 5.4980x10–5 + 2.7578x10–5 + 1.3847x10–5 + 0.6871x10–5 
PM2 Total = 10.3276x10–5 

 
There is an 10.3276x10–5 probability that the WACSS will experience a safety–related 
malfunction and hazardous event during system operation, causing the weapon to fuse 
and detonate too early after weapon release 
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Figure 26 WACSS M3 Malfunction Process Flow 
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M3 – Inability to fuse weapon – Dead Fuse 
 
Case 1: 
 
Failure (F8) of Process 5 (P5), through O10, resulting in an inability to fuse the weapon – 
Dead Fuse, and Malfunction 3 (M3) 
 
F8^P5 {[O10]} → M3 
 
Assume: 

Pe P5 0.25 
Pe O10 ∪ P5 0.95 
Pf Intermittent F8 1.0000x10–5 

Pf Partial F8 0.5000x10–5 

Pf Complete F8 0.2500x10–5 
Pf Cataclysmic F8 0.1250x10–5 

 
Intermittent (1.0000x10–5 * 0.25) * (0.95) = 0.2375x10–5 ∴ 
 
Partial (0.5000x10–5 * .25) * (0.95) = 0.1188x10–5 ∴ 
 
Complete (0.2500x10–5 * .25) * (0.95) = 0.0594x10–5 ∴ 
 
Cataclysmic (0.1250x10–5 * .25) * (0.95) = 0.0297x10–5 ∴ 
 
There is a 0.2375x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.1188x10–5 probability of a partial failure, 0.0594x10–5 probability of complete failure, 
and a 0.0297x10–5 probability of a cataclysmic failure during the operation of P5 (The 
Weapon Configuration Change Processor), resulting in an inability to fuse the weapon – 
Dead Fuse 
 
Case 2: 
 
Failure (F9) of Output 10 (O10) resulting in an inability to fuse the weapon – Dead Fuse, 
and Malfunction 3 (M3) 
 
F9^O10 → M3 
 
Assume: 

Pe O10 0.10 
Pf Intermittent F9 0.8000x10–5 

Pf Partial F9 0.4000x10–5 

Pf Complete F9 0.2000x10–5 
Pf Cataclysmic F9 0.1000x10–5 
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Intermittent (0.8000x10–5 * 0.10) = 0.0800x10–5 ∴ 
 
Partial (0.4000x10–5 * .10) = 0.0400x10–5 ∴ 
 
Complete (0.2000x10–5 * .10) = 0.0200x10–5 ∴ 
 
Cataclysmic (0.1000x10–5 * .10) = 0.0100x10–5 ∴ 
 
There is a 0.0800x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.0400x10–5 probability of a partial failure, 0.0200x10–5 probability of complete failure, 
and a 0.0100x10–5 probability of a cataclysmic failure during the output operation of O10 , 
resulting in an inability to fuse the weapon – Dead Fuse 
 
Case 3: 
 
Failure (F10) of Process 7 (P7) resulting in an inability to fuse the weapon – Dead Fuse, 
and Malfunction 3 (M3) 
 
F10^P7 → M3 
 
Assume: 

Pe P7 0.10 
Pf Intermittent F10 1.2000x10–5 

Pf Partial F10 0.6000x10–5 

Pf Complete F10 0.3000x10–5 
Pf Cataclysmic F10 0.1500x10–5 

 
Intermittent (1.2000x10–5 * 0.10) = 0.1200x10–5 ∴ 
 
Partial (0.6000x10–5 * .10) = 0.0600x10–5 ∴ 
 
Complete (0.3000x10–5 * .10) = 0.0300x10–5 ∴ 
 
Cataclysmic (0.1500x10–5 * .10) = 0.0150x10–5 ∴ 
 
There is a 0.1200x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.0600x10–5 probability of a partial failure, 0.0300x10–5 probability of complete failure, 
and a 0.0150x10–5 probability of a cataclysmic failure during the operation of P7, 
resulting in an inability to fuse the weapon – Dead Fuse 
 
Case 4: 
 
Failure (F11.1) of Input 1 (I1), and/or Failure (F11.2) of Input 2 (I2), and/or Failure (F11.3) of 
Process 1 (P1), and/or Failure (F11.4) of Output 1 (O1), and/or Failure (F11.5) of Input 6 (I6), 
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and/or Failure (F11.6) of Process 3 (P3), through O4, I8, P4, O6, I11, P5, and O10, resulting in 
an inability to fuse the weapon – Dead Fuse, and Malfunction 3 (M3) 
 
( F11.1^I1 {[P1, O1, I6, P3]} or F11.2^I2 {[P1, O1, I6, P3]} or F11.3^P1 {[O1, I6, P3]} or F11.4^O1 
{[I6, P3]} or F11.5^I6 {[P3]} or F11.6^P3) {[O4, I8, P4, O6, I11, P5, O10]} → M3 
 
Assume: 
Pe I1 0.66 
Pe I2 0.66 
Pe P1 0.66 
Pe O1 0.66 
Pe I6 0.66 
Pe P3 0.66 
∑Pe {O4, I8, P4, O6, I11, P5, O10} ∪ (I1, I2, 

P1, O1, I6, P3) 0.6983 
∑Pe {P1, O1, I6, P3} ∪ I1 0.8145 
∑Pe {P1, O1, I6, P3} ∪ I2 0.8145 
∑Pe {O1, I6, P3} ∪ P1 0.8574 
∑Pe {I6, P3} ∪ O1 0.9025 
Pe I6 ∪ P3 0.95 
Pf Intermittent F11.1 1.8000x10–5 

Pf Partial F11.1 0.9000x10–5 

Pf Complete F11.1 0.4500x10–5 
Pf Cataclysmic F11.1 0.2250x10–5 
Pf Intermittent F11.2 1.5000x10–5 

Pf Partial F11.2 0.7500x10–5 

Pf Complete F11.2 0.3750x10–5 
Pf Cataclysmic F11.2 0.1875x10–5 
Pf Intermittent F11.3 1.4000x10–5 

Pf Partial F11.3 0.7000x10–5 

Pf Complete F11.3 0.3500x10–5 

Pf Cataclysmic F11.3 0.1750x10–5 
Pf Intermittent F11.4 0.5000x10–5 

Pf Partial F11.4 0.2500x10–5 

Pf Complete F11.4 0.1250x10–5 
Pf Cataclysmic F11.4 0.0625x10–5 
Pf Intermittent F11.5 0.5000x10–5 

Pf Partial F11.5 0.2500x10–5 

Pf Complete F11.5 0.1250x10–5 
Pf Cataclysmic F11.5 0.0625x10–5 

Pf Intermittent F11.6 1.2000x10–5 

Pf Partial F11.6 0.6000x10–5 

Pf Complete F11.6 0.3000x10–5 
Pf Cataclysmic F11.6 0.1500x10–5 

 
Intermittent (((1.8000x10–5 * 0.66) * (0.8145)) + ((1.5000x10–5 * 0.66) * (0.8145)) + 
((1.4000x10–5 * 0.66) * (0.8574)) + ((0.5000x10–5 * 0.66) * (0.9025)) + (0.5000x10–5 * 
0.66) * (0.95)) + (1.2000x10–5 * 0.66)) * (0.6983) = 
 
(0.9676x10–5 + 0.8064x10–5 + 0.7922x10–5 + 0.2978x10–5 + 0.3135x10–5 + 0.7920x10–5) 
* (0.6983) = 2.7719x10–5 ∴ 
 
Partial (((0.9000x10–5 * 0.66) * (0.8145)) + ((0.7500x10–5 * 0.66) * (0.8145)) + 
((0.7000x10–5 * 0.66) * (0.8574)) + ((0.2500x10–5 * 0.66) * (0.9025)) + (0.2500x10–5 * 
0.66) * (0.95)) + (0.6000x10–5 * 0.66)) * (0.6983) = 
 

(0.4838x10–5 + 0.4032x10–5 + 0.3961x10–5 + 0.1489x10–5 + 0.1568x10–5 + 0.3960x10–5) 
* (0.6983) = 1.3860x10–5 ∴ 
 
Complete (((0.4500x10–5 * 0.66) * (0.8145)) + ((0.3750x10–5 * 0.66) * (0.8145)) + 
((0.3500x10–5 * 0.66) * (0.8574)) + ((0.1250x10–5 * 0.66) * (0.9025)) + (0.1250x10–5 * 
0.66) * (0.95)) + (0.3000x10–5 * 0.66)) * (0.6983) = 
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(0.2419x10–5 + 0.2016x10–5 + 0.1981x10–5 + 0.0745x10–5 + 0.0784x10–5 + 0.1980x10–5) 
* (0.6983) = 0.6930x10–5 ∴ 
Cataclysmic (((0.2250x10–5 * 0.66) * (0.8145)) + ((0.1875x10–5 * 0.66) * (0.8145)) + 
((0.1750x10–5 * 0.66) * (0.8574)) + ((0.0625x10–5 * 0.66) * (0.9025)) + (0.0625x10–5 * 
0.66) * (0.95)) + (0.1500x10–5 * 0.66)) * (0.6983) = 
 

(0.1210x10–5 + 0.1008x10–5 + 0.0990x10–5 + 0.0372x10–5 + 0.0392x10–5 + 0.0990x10–5) 
* (0.6983) = 0.3465x10–5 ∴ 
 
There is a 2.7719x10–5 probability of the WACSS experiencing an intermittent failure, a 
1.3860x10–5 probability of a partial failure, a 0.6930x10–5 probability of complete failure, 
and a 0.3465x10–5 probability of a cataclysmic failure during the operation of I1, I2, P1, 
O1, I6, and/or P3 as a failure in weapon’s signal regarding weapon’s configuration and 
status, resulting in an inability to fuse the weapon – Dead Fuse 
 
Summary: 
 
Failure in Case 1, Case 2, Case 3, or Case 4, resulting in the weapon fusing to detonate 
too early after weapon’s release and Malfunction 3 (M3) 
 
PM3 = {PCase 1 or PCase 2 or PCase 3 or PCase 4} 
 
Intermittent PM3 = 0.2375x10–5 + 0.0800x10–5 + 0.1200x10–5 + 2.7719x10–5 = 3.2094x10–

5 
Partial PM3 = 0.1188x10–5 + 0.0400x10–5 + 0.0600x10–5 + 1.3860x10–5 = 1.6048x10–5 
Complete PM3 = 0.0594x10–5 + 0.0200x10–5 + 0.0300x10–5 + 0.6930x10–5 = 0.8024x10–5 
Cataclysmic PM3 = 0.0297x10–5 + 0.0100x10–5 + 0.0150x10–5 + 0.3465x10–5 = 
0.4012x10–5 
 
PM3 Total = PM3 Intermittent + PM3 Partial + PM3 Complete + PM3 Cataclysmic 
 
PM3 Total = 3.2094x10–5 + 1.6048x10–5 + 0.8024x10–5 + 0.4012x10–5 
PM3 Total = 6.0178x10–5 

 
There is a 6.0178x10–5 probability that the WACSS will experience a safety–related 
malfunction and hazardous event during system operation, resulting in an inability to fuse 
the weapon – Dead Fuse 
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Figure 27 WACSS M4 Malfunction Process Flow 
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M4 – Inability to prevent weapons release outside of weapon’s envelopes 
 
Case 1: 
 
Failure in Weapon’s data signal regarding weapon’s configuration and status – I1, I2, P1, 
O1, I6, P3 
 
Failure (F12.1) of Input 1 (I1), and/or Failure (F12.2) of Input 2 (I2), and/or Failure (F12.3) of 
Process 1 (P1), and/or Failure (F12.4) of Output 1 (O1), and/or Failure (F12.5) of Input 6 (I6), 
and/or Failure (F12.6) of Process 3 (P3), through O4, I8, P4, O8, I13, P7, and O12, resulting in 
an inability to prevent weapons release outside of the weapon’s envelope, and 
Malfunction 4 (M4) 
 
( F12.1^I1 {[P1, O1, I6, P3]} or F12.2^I2 {[P1, O1, I6, P3]} or F12.3^P1 {[O1, I6, P3]} or F12.4^O1 
{[I6, P3]} or F12.5^I6 {[P3]} or F12.6^P3) {[O4, I8, P4, O8, I13, P7, O12]} → M4 
 
Assume: 
Pe I1 0.66 
Pe I2 0.66 
Pe P1 0.66 
Pe O1 0.66 
Pe I6 0.66 
Pe P3 0.66 
∑Pe {O4, I8, P4, O6, I13, P7, O12} ∪ (I1, I2, 

P1, O1, I6, P3) 0.6983 
∑Pe {P1, O1, I6, P3} ∪ I1 0.8145 
∑Pe {P1, O1, I6, P3} ∪ I2 0.8145 
∑Pe {O1, I6, P3} ∪ P1 0.8574 
∑Pe {I6, P3} ∪ O1 0.9025 
Pe I6 ∪ P3 0.95 
Pf Intermittent F12.1 1.8000x10–5 

Pf Partial F12.1 0.9000x10–5 

Pf Complete F12.1 0.4500x10–5 
Pf Cataclysmic F12.1 0.2250x10–5 
Pf Intermittent F12.2 1.5000x10–5 

Pf Partial F12.2 0.7500x10–5 

Pf Complete F12.2 0.3750x10–5 
Pf Cataclysmic F12.2 0.1875x10–5 
Pf Intermittent F12.3 1.4000x10–5 

Pf Partial F12.3 0.7000x10–5 

Pf Complete F12.3 0.3500x10–5 

Pf Cataclysmic F12.3 0.1750x10–5 
Pf Intermittent F12.4 0.5000x10–5 

Pf Partial F12.4 0.2500x10–5 

Pf Complete F12.4 0.1250x10–5 
Pf Cataclysmic F12.4 0.0625x10–5 
Pf Intermittent F12.5 0.5000x10–5 

Pf Partial F12.5 0.2500x10–5 

Pf Complete F12.5 0.1250x10–5 
Pf Cataclysmic F12.5 0.0625x10–5 

Pf Intermittent F12.6 1.4000x10–5 

Pf Partial F12.6 0.7000x10–5 

Pf Complete F12.6 0.3500x10–5 
Pf Cataclysmic F12.6 0.1750x10–5 

 
Intermittent (((1.8000x10–5 * 0.66) * (0.8145)) + ((1.5000x10–5 * 0.66) * (0.8145)) + 
((1.4000x10–5 * 0.66) * (0.8574)) + ((0.5000x10–5 * 0.66) * (0.9025)) + (0.5000x10–5 * 
0.66) * (0.95)) + (1.4000x10–5 * 0.66)) * (0.6983) = 
 
(0.9676x10–5 + 0.8064x10–5 + 0.7922x10–5 + 0.2978x10–5 + 0.3135x10–5 + 0.9240x10–5) 
* (0.6983) = 2.8641x10–5 ∴ 
 



368 

Partial (((0.9000x10–5 * 0.66) * (0.8145)) + ((0.7500x10–5 * 0.66) * (0.8145)) + 
((0.7000x10–5 * 0.66) * (0.8574)) + ((0.2500x10–5 * 0.66) * (0.9025)) + (0.2500x10–5 * 
0.66) * (0.95)) + (0.7000x10–5 * 0.66)) * (0.6983) = 
 

(0.4838x10–5 + 0.4032x10–5 + 0.3961x10–5 + 0.1489x10–5 + 0.1568x10–5 + 0.4620x10–5) 
* (0.6983) = 1.4321x10–5 ∴ 
 
Complete (((0.4500x10–5 * 0.66) * (0.8145)) + ((0.3750x10–5 * 0.66) * (0.8145)) + 
((0.3500x10–5 * 0.66) * (0.8574)) + ((0.1250x10–5 * 0.66) * (0.9025)) + (0.1250x10–5 * 
0.66) * (0.95)) + (0.3500x10–5 * 0.66)) * (0.6983) = 

 

(0.2419x10–5 + 0.2016x10–5 + 0.1981x10–5 + 0.0745x10–5 + 0.0784x10–5 + 0.2310x10–5) 
* (0.6983) = 0.7161x10–5 ∴ 
 
Cataclysmic (((0.2250x10–5 * 0.66) * (0.8145)) + ((0.1875x10–5 * 0.66) * (0.8145)) + 
((0.1750x10–5 * 0.66) * (0.8574)) + ((0.0625x10–5 * 0.66) * (0.9025)) + (0.0625x10–5 * 
0.66) * (0.95)) + (0.1750x10–5 * 0.66)) * (0.6983) = 
 

(0.1210x10–5 + 0.1008x10–5 + 0.0990x10–5 + 0.0372x10–5 + 0.0392x10–5 + 0.1155x10–5) 
* (0.6983) = 0.3580x10–5 ∴ 
 
There is a 2.8641x10–5 probability of the WACSS experiencing an intermittent failure, a 
1.4321x10–5 probability of a partial failure, a 0.7161x10–5 probability of complete failure, 
and a 0.3580x10–5 probability of a cataclysmic failure during the operation of I1, I2, P1, 
O1, I6, and/or P3 as a resulting in an inability to prevent weapons release outside of the 
weapon’s envelope 
 
Case 2: 
 
Failure (F13.1) of Input 4 (I4), and/or Failure (F13.2) of Input 5 (I5), and/or Failure (F13.3) of 
Process 2 (P2), and/or Failure (F13.4) of Output 2 (O1), and/or Failure (F13.5) of Input 7 (I7), 
and/or Failure (F13.6) of Process 3 (P3), through O4, I8, P4, O8, I13, P7, and O12, resulting in 
an inability to prevent weapons release outside of the weapon’s envelope, and 
Malfunction 4 (M4) 
 
( F13.1^I4 {[P2, O2, I7, P3]} or F13.2^I5 {[P2, O2, I7, P3]} or F13.3^P2 {[O2, I7, P3]} or F13.4^O2 
{[I7, P3]} or F13.5^I7 {[P3]} or F13.6^P3) {[O4, I8, P4, O8, I13, P7, O12]} → M4 
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Assume: 
Pe I4 0.90 
Pe I5 0.90 
Pe P2 0.66 
Pe O2 0.66 
Pe I7 0.66 
Pe P3 0.66 
∑Pe {O4, I8, P4, O6, I13, P7, O12} ∪ (I4, I5, 

P2, O2, I7, P3) 0.6983 
∑Pe {P2, O2, I7, P3} ∪ I4 0.8145 
∑Pe {P2, O2, I7, P3} ∪ I5 0.8145 
∑Pe {O2, I7, P3} ∪ P2 0.8574 
∑Pe {I7, P3} ∪ O2 0.9025 
Pe I7 ∪ P3 0.95 
Pf Intermittent F13.1 1.5000x10–5 

Pf Partial F13.1 0.7500x10–5 

Pf Complete F13.1 0.3750x10–5 
Pf Cataclysmic F13.1 0.1875x10–5 
Pf Intermittent F13.2 1.5000x10–5 

Pf Partial F13.2 0.7500x10–5 

Pf Complete F13.2 0.3750x10–5 
Pf Cataclysmic F13.2 0.1875x10–5 
Pf Intermittent F13.3 1.0000x10–5 

Pf Partial F13.3 0.5000x10–5 

Pf Complete F13.3 0.2500x10–5 

Pf Cataclysmic F13.3 0.1250x10–5 
Pf Intermittent F13.4 0.5000x10–5 

Pf Partial F13.4 0.2500x10–5 

Pf Complete F13.4 0.1250x10–5 
Pf Cataclysmic F13.4 0.0625x10–5 
Pf Intermittent F13.5 0.5000x10–5 

Pf Partial F13.5 0.2500x10–5 

Pf Complete F13.5 0.1250x10–5 
Pf Cataclysmic F13.5 0.0625x10–5 

Pf Intermittent F13.6 1.4000x10–5 

Pf Partial F13.6 0.7000x10–5 

Pf Complete F13.6 0.3500x10–5 
Pf Cataclysmic F13.6 0.1750x10–5 

 
Intermittent (((1.5000x10–5 * 0.90) * (0.8145)) + ((1.5000x10–5 * 0.90) * (0.8145)) + 
((1.0000x10–5 * 0.66) * (0.8574)) + ((0.5000x10–5 * 0.66) * (0.9025)) + (0.5000x10–5 * 
0.66) * (0.95)) + (1.4000x10–5 * 0.66)) * (0.6983) = 
 
(1.0996x10–5 + 1.0996x10–5 + 0.5659x10–5 + 0.2978x10–5 + 0.3135x10–5 + 0.9240x10–5) 
* (0.6983) = 3.0030x10–5 ∴ 
 
Partial (((0.7500x10–5 * 0.90) * (0.8145)) + ((0.7500x10–5 * 0.90) * (0.8145)) + 
((0.5000x10–5 * 0.66) * (0.8574)) + ((0.2500x10–5 * 0.66) * (0.9025)) + (0.2500x10–5 * 
0.66) * (0.95)) + (0.7000x10–5 * 0.66)) * (0.6983) = 
 

(0.5498x10–5 + 0.5498x10–5 + 0.2829x10–5 + 0.1489x10–5 + 0.1568x10–5 + 0.4620x10–5) 
* (0.6983) = 1.5015x10–5 ∴ 
 
Complete (((0.3750x10–5 * 0.90) * (0.8145)) + ((0.3750x10–5 * 0.90) * (0.8145)) + 
((0.2500x10–5 * 0.66) * (0.8574)) + ((0.1250x10–5 * 0.66) * (0.9025)) + (0.1250x10–5 * 
0.66) * (0.95)) + (0.3500x10–5 * 0.66)) * (0.6983) = 

 

(0.2749x10–5 + 0.2749x10–5 + 0.1415x10–5 + 0.0745x10–5 + 0.0784x10–5 + 0.2310x10–5) 
* (0.6983) = 0.7508x10–5 ∴ 
 
Cataclysmic (((0.1875x10–5 * 0.90) * (0.8145)) + ((0.1875x10–5 * 0.90) * (0.8145)) + 
((0.1250x10–5 * 0.66) * (0.8574)) + ((0.0625x10–5 * 0.66) * (0.9025)) + (0.0625x10–5 * 
0.66) * (0.95)) + (0.1750x10–5 * 0.66)) * (0.6983) = 
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(0.1374x10–5 + 0.1374x10–5 + 0.0707x10–5 + 0.0372x10–5 + 0.0392x10–5 + 0.1155x10–5) 
* (0.6983) = 0.3753x10–5 ∴ 
 
There is a 3.0030x10–5 probability of the WACSS experiencing an intermittent failure, a 
1.5015x10–5 probability of a partial failure, a 0.7508x10–5 probability of complete failure, 
and a 0.3753x10–5 probability of a cataclysmic failure during the operation of I1, I2, P1, 
O1, I6, and/or P3 resulting in an inability to prevent weapons release outside of the 
weapon’s envelope, and Malfunction 4 (M4) 
 
Case 3: 
 
Failure (F14) of Process 7 (P7), through O12 resulting in an inability to prevent weapons 
release outside of the weapon’s envelope, and Malfunction 4 (M4) 
 
F14^P7 {[O12]} → M2 
 
Assume: 

Pe P7 0.10 
Pe O12 ∪ P7 0.95 
Pf Intermittent F14 1.2000x10–5 

Pf Partial F14 0.6000x10–5 

Pf Complete F14 0.3000x10–5 
Pf Cataclysmic F14 0.1500x10–5 

 
Intermittent (1.2000x10–5 * 0.10) * 0.95 = 0.1140x10–5 ∴ 
 
Partial (0.6000x10–5 * 0.10) * 0.95 = 0.0570x10–5 ∴ 
 
Complete (0.3000x10–5 * 0.10) * 0.95 = 0.0285x10–5 ∴ 
 
Cataclysmic (0.1500x10–5 * 0.10) * 0.95 = 0.0142x10–5 ∴ 
 
There is a 0.1140x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.0570x10–5 probability of a partial failure, a 0.0285x10–5 probability of complete failure, 
and a 0.0143x10–5 probability of a cataclysmic failure during the operation of P7, 
resulting in an inability to prevent weapons release outside of the weapon’s envelope, and 
Malfunction 4 (M4) 
 
Case 4: 
 
Failure (F15.1) of Process 7 (P7), and/or Failure (F15.2) of Output 12 (O12), resulting in an 
inability to prevent weapons release outside of the weapon’s envelope, and Malfunction 4 
(M4) 
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( F15.1^P7 {[O12]} or F15.2^O12 ) → M4 
 
Assume: 
Pe P7 0.10 
Pe O12 0.07 
Pe P7 ∪ O12 0.95 
Pf Intermittent F15.1 0.5000x10–5 

Pf Partial F15.1 0.2500x10–5 

Pf Complete F15.1 0.1250x10–5 

Pf Cataclysmic F15.1 0.0625x10–5 
Pf Intermittent F15.2 0.8000x10–5 

Pf Partial F15.2 0.4000x10–5 

Pf Complete F15.2 0.2000x10–5 
Pf Cataclysmic F15.2 0.1000x10–5 
 

 
Intermittent ((0.5000x10–5 * 0.10) * (0.95)) + (0.8000x10–5 * 0.07) = 
 
(0.0475x10–5 + 0.0560x10–5) = 0.1035x10–5 ∴ 
 
Partial ((0.2500x10–5 * 0.10) * (0.95)) + (0.4000x10–5 * 0.07) = 
 
(0.0238x10–5 + 0.0280x10–5) = 0.0518x10–5 ∴ 
 
Complete ((0.1250x10–5 * 0.10) * (0.95)) + (0.2000x10–5 * 0.07) = 
 
(0.0119x10–5 + 0.0140x10–5) = 0.0259x10–5 ∴ 
 
Cataclysmic ((0.0625x10–5 * 0.10) * (0.95)) + (0.1000x10–5 * 0.07) = 
 
(0.0059x10–5 + 0.0070x10–5) = 0.0129x10–5 ∴ 
 
There is a 0.1035x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.0518x10–5 probability of a partial failure, a 0.0259x10–5 probability of complete failure, 
and a 0.0129x10–5 probability of a cataclysmic failure during the operation of P7 and/or 
O12 resulting in an inability to prevent weapons release outside of the weapon’s envelope, 
and Malfunction 4 (M4) 
 
Case 5: 
 
Failure (F16.1) of Output 4 (O4), and/or Failure (F16.2) of Input 8 (I8), and/or Failure (F16.3) 
of Process 4 (P4), and/or Failure (F16.4) of Output 8 (O8), and/or Failure (F16.5) of Input 13 
(I13), through P7 and O12, resulting in an inability to prevent weapons release outside of 
the weapon’s envelope, and Malfunction 4 (M4) 
 
( F16.1^O4 {[I8, P4, O8, I13]} or F16.2^I8 {[P4, O8, I13]} or F16.3^P4 {[O8, I13]} or F16.4^O8 
{[I13]} or F16.5^I13 ) {[P7, O12]} → M4 
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Assume: 
Pe O4 0.40 
Pe I8 0.40 
Pe P4 0.25 
Pe O8 0.10 
Pe I13 0.10 
∑Pe {P7, O12} ∪ (O4, I8, P4, O8, I13)

 0.9025 
∑Pe {I8, P4, O8, I13} ∪ O4 0.8145 
∑Pe {P4, O8, I13} ∪ I8 0.8574 
∑Pe {O8, I13} ∪ P4 0.9025 
Pe I13 ∪ O8 0.95 
Pf Intermittent F16.1 0.5000x10–5 

Pf Partial F16.1 0.2500x10–5 

Pf Complete F16.1 0.1250x10–5 
Pf Cataclysmic F16.1 0.0625x10–5 
Pf Intermittent F16.2 0.5000x10–5 

Pf Partial F16.2 0.2500x10–5 

Pf Complete F16.2 0.1250x10–5 
Pf Cataclysmic F16.2 0.0625x10–5 
Pf Intermittent F16.3 0.8000x10–5 

Pf Partial F16.3 0.4000x10–5 

Pf Complete F16.3 0.2000x10–5 

Pf Cataclysmic F16.3 0.1000x10–5 
Pf Intermittent F16.4 0.6000x10–5 

Pf Partial F16.4 0.3000x10–5 

Pf Complete F16.4 0.1500x10–5 
Pf Cataclysmic F16.4 0.0750x10–5 
Pf Intermittent F16.5 0.6000x10–5 

Pf Partial F16.5 0.3000x10–5 

Pf Complete F16.5 0.1500x10–5 
Pf Cataclysmic F16.5 0.0750x10–5 

 
 
Intermittent (((0.5000x10–5 * 0.40) * (0.8145)) + ((0.5000x10–5 * 0.40) * (0.8574)) + 
((0.8000x10–5 * 0.25) * (0.9025)) + ((0.6000x10–5 * 0.10) * (0.9500)) + (0.6000x10–5 * 
0.10)) * (0.9025) = 
 
(0.1629x10–5 + 0.1715x10–5 + 0.1805x10–5 + 0.0570x10–5 + 0.0600x10–5) * (0.9025) = 
0.5703x10–5 ∴ 
 
Partial (((0.2500x10–5 * 0.40) * (0.8145)) + ((0.2500x10–5 * 0.40) * (0.8574)) + 
((0.4000x10–5 * 0.25) * (0.9025)) + ((0.3000x10–5 * 0.10) * (0.9500)) + (0.3000x10–5 * 
0.10)) * (0.9025) = 
 
(0.0815x10–5 + 0.0857x10–5 + 0.0903x10–5 + 0.0285x10–5 + 0.0300x10–5) * (0.9025) = 
0.2852x10–5 ∴ 
 
Complete (((0.1250x10–5 * 0.40) * (0.8145)) + ((0.1250x10–5 * 0.40) * (0.8574)) + 
((0.2000x10–5 * 0.25) * (0.9025)) + ((0.1500x10–5 * 0.10) * (0.9500)) + (0.1500x10–5 * 
0.10)) * (0.9025) = 
 
(0.0407x10–5 + 0.0429x10–5 + 0.0451x10–5 + 0.0143x10–5 + 0.0150x10–5) * (0.9025) = 
0.1426x10–5 ∴ 
 
Cataclysmic (((0.0625x10–5 * 0.40) * (0.8145)) + ((0.0625x10–5 * 0.40) * (0.8574)) + 
((0.1000x10–5 * 0.25) * (0.9025)) + ((0.0750x10–5 * 0.10) * (0.9500)) + (0.0750x10–5 * 
0.10)) * (0.9025) = 
 
(0.0204x10–5 + 0.0214x10–5 + 0.0226x10–5 + 0.0071x10–5 + 0.0075x10–5) * (0.9025) = 
0.0713x10–5 ∴ 
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There is a 0.5703x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.2852x10–5 probability of a partial failure, a 0.1426x10–5 probability of complete failure, 
and a 0.0713x10–5 probability of a cataclysmic failure during the operation of O4, I8, P4, 
O8, and/or I13 resulting in an inability to prevent weapons release outside of the weapon’s 
envelope, and Malfunction 4 (M4) 
 
Summary: 
 
Failure in Case 1, Case 2, Case 3, Case 4, or Case 5, resulting in an inability to prevent 
weapon’s release outside of the weapon’s envelope, and Malfunction 4 (M4) 
 
PM4 = {PCase 1 or PCase 2 or PCase 3 or PCase 4 or PCase 5} 
 
Intermittent PM4 = 2.8641x10–5 + 3.0030x10–5 + 0.1140x10–5 + 0.1035x10–5 + 
0.5703x10–5 = 6.6549x10–5 
Partial PM4 = 1.4321x10–5 + 1.5015x10–5 + 0.0570x10–5 + 0.0518x10–5 + 0.2852x10–5 = 
3.3276x10–5 
Complete PM4 = 0.7161x10–5 + 0.7508x10–5 + 0.0285x10–5 + 0.0259x10–5 + 0.1426x10–5 
= 1.6639x10–5 
Cataclysmic PM4 = 0.3580x10–5 + 0.3753x10–5 + 0.0143x10–5 + 0.0129x10–5 + 
0.0713x10–5 = 0.8318x10–5 
 
PM4 Total = PM4 Intermittent + PM4 Partial + PM4 Complete + PM4 Cataclysmic 
 
PM4 Total = 6.6549x10–5 + 3.3276x10–5 + 1.6639x10–5 + 0.8318x10–5 
PM4 Total = 12.4782x10–5 

 
There is a 12.4782x10–5 probability that the WACSS will experience a safety–related 
malfunction and hazardous event during system operation, resulting in an inability to 
prevent weapons release outside of the weapon’s envelope 
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Figure 28 WACSS M5 Malfunction Process Flow 
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M5 – Drop incorrect weapon from pylon 
 
Case 1: 
 
Failure in weapons launch / deployment logic to select the proper weapon – P7 
 
Failure (F17) of Process 7 (P7), through O12, resulting in the drop of an incorrect weapon 
from pylon, and Malfunction 5 (M5) 
 
F17^P7 {[O12]} → M5 
 
Assume: 

Pe P7 0.10 
Pe P7 ∪ O12 0.95 
Pf Intermittent F17 1.0000x10–5 

Pf Partial F17 0.5000x10–5 

Pf Complete F17 0.2500x10–5 
Pf Cataclysmic F17 0.1250x10–5 

 
Intermittent (1.0000x10–5 * 0.10) * (0.9500) = 0.0950x10–5 ∴ 
 
Partial (0.5000x10–5 * 0.10) * (0.9500) = 0.0475x10–5 ∴ 
 
Complete (0.2500x10–5 * 0.10) * (0.9500) = 0.0238x10–5 ∴ 
 
Cataclysmic (0.1250x10–5 * 0.10) * (0.9500) = 0.0119x10–5 ∴ 
 
There is a 0.0950x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.0475x10–5 probability of a partial failure, a 0.0238x10–5 probability of complete failure, 
and a 0.0119x10–5 probability of a cataclysmic failure during the operation of P7 resulting 
in a failure in the weapon launch / deployment logic to select the proper weapon and 
Malfunction 5 (M5); the dropping of an incorrect weapon from a weapon’s pylon 
 
Case 2: 
 
Failure (F18.1) of Process 4 (P4), and/or Failure (F18.2) of Input 9 (I9), and/or Failure (F18.3) 
of Output 8 (O8), and/or Failure (F18.4) of Input 13 (I13), and/or Failure (F18.5) of Process 7 
(P7), through O12, resulting in the drop of an incorrect weapon from pylon, and 
Malfunction 5 (M5) 
 
( F18.1^P4 {[I9, O8, I13, P7]} or F18.2^I9 {[O8, I13, P7]} or F18.3^O8 {[I13, P7]} or F18.4^I13 
{[P7]} or F18.5^P7 ) {[O12]} → M4 
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Assume: 
Pe P4 0.25 
Pe I9 0.25 
Pe O8 0.10 
Pe I13 0.10 
Pe P7 0.10 
∑Pe {O12} ∪ (P4, I9, O8, I13, P7)

 0.9500 
∑Pe {I9, O8, I13, P7} ∪ P4 0.8145 
∑Pe {O8, I13, P7} ∪ I9 0.8574 
∑Pe {I13, P7} ∪ O8 0.9025 
Pe I13 ∪ P7 0.95 
Pf Intermittent F18.1 0.8000x10–5 

Pf Partial F18.1 0.4000x10–5 

Pf Complete F18.1 0.2000x10–5 
Pf Cataclysmic F18.1 0.1000x10–5 
Pf Intermittent F18.2 1.9000x10–5 

Pf Partial F18.2 0.9500x10–5 

Pf Complete F18.2 0.4750x10–5 
Pf Cataclysmic F18.2 0.2375x10–5 
Pf Intermittent F18.3 0.5000x10–5 

Pf Partial F18.3 0.2500x10–5 

Pf Complete F18.3 0.1250x10–5 

Pf Cataclysmic F18.3 0.0625x10–5 
Pf Intermittent F18.4 0.5000x10–5 

Pf Partial F18.4 0.2500x10–5 

Pf Complete F18.4 0.1250x10–5 
Pf Cataclysmic F18.4 0.0625x10–5 
Pf Intermittent F18.5 1.5000x10–5 

Pf Partial F18.5 0.7500x10–5 

Pf Complete F18.5 0.3750x10–5 
Pf Cataclysmic F18.5 0.1875x10–5 

 
 
Intermittent (((0.8000x10–5 * 0.25) * (0.8145)) + ((1.9000x10–5 * 0.25) * (0.8574)) + 
((0.5000x10–5 * 0.10) * (0.9025)) + ((0.5000x10–5 * 0.10) * (0.9500)) + (1.5000x10–5 * 
0.10)) * (0.9500) = 
 
(0.1629x10–5 + 0.4073x10–5 + 0.0451x10–5 + 0.0475x10–5 + 0.1500x10–5) * (0.9500) = 
0.7722x10–5 ∴ 
 
Partial (((0.4000x10–5 * 0.25) * (0.8145)) + ((0.9500x10–5 * 0.25) * (0.8574)) + 
((0.2500x10–5 * 0.10) * (0.9025)) + ((0.2500x10–5 * 0.10) * (0.9500)) + (0.7500x10–5 * 
0.10)) * (0.9500) = 
 
(0.0815x10–5 + 0.2036x10–5 + 0.0226x10–5 + 0.0238x10–5 + 0.0750x10–5) * (0.9500) = 
0.3862x10–5 ∴ 
 
Complete (((0.2000x10–5 * 0.25) * (0.8145)) + ((0.4750x10–5 * 0.25) * (0.8574)) + 
((0.1250x10–5 * 0.10) * (0.9025)) + ((0.1250x10–5 * 0.10) * (0.9500)) + (0.3750x10–5 * 
0.10)) * (0.9500) = 
 
(0.0407x10–5 + 0.1018x10–5 + 0.0113x10–5 + 0.0119x10–5 + 0.0375x10–5) * (0.9500) = 
0.1930x10–5 ∴ 
 
Cataclysmic (((0.1000x10–5 * 0.25) * (0.8145)) + ((0.2375x10–5 * 0.25) * (0.8574)) + 
((0.0625x10–5 * 0.10) * (0.9025)) + ((0.0625x10–5 * 0.10) * (0.9500)) + (0.1875x10–5 * 
0.10)) * (0.9500) = 
 
(0.0204x10–5 + 0.0509x10–5 + 0.0056x10–5 + 0.0059x10–5 + 0.0188x10–5) * (0.9500) = 
0.0965x10–5 ∴ 
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There is a 0.7722x10–5 probability of the WACSS experiencing an intermittent failure, a 
0.3862x10–5 probability of a partial failure, a 0.1930x10–5 probability of complete failure, 
and a 0.0965x10–5 probability of a cataclysmic failure during the operation of P4, I9, O8, 
I13, and/or P7 resulting in a failure in the system to comprehend which weapon was 
selected and Malfunction 5 (M5); the dropping of an incorrect weapon from a weapon’s 
pylon 
 
Summary: 
 
Failure in Case 1 or Case 2 resulting in the dropping of an incorrect weapon from a 
weapon’s pylon and Malfunction 5 (M5) 
 
PM5 = {PCase 1 or PCase 2} 
 
Intermittent PM5 = 0.0950x10–5 + 0.7722x10–5 = 0.8672x10–5 
Partial PM5 = 0.0475x10–5 + 0.3862x10–5 = 0.4337x10–5 
Complete PM5 = 0.0238x10–5 + 0.1930x10–5 = 0.2168x10–5 
Cataclysmic PM5 = 0.0119x10–5 + 0.0965x10–5 = 0.1084x10–5 
 
PM5 Total = PM5 Intermittent + PM5 Partial + PM5 Complete + PM5 Cataclysmic 
 
PM5 Total = 0.8672x10–5 + 0.4337x10–5 + 0.2168x10–5 + 0.1084x10–5 
PM5 Total = 1.6261x10–5 

 
There is a 1.6261x10–5 probability that the WACSS will experience a safety–related 
malfunction and hazardous event during system operation, resulting in the dropping of an 
incorrect weapon from a weapon’s pylon 
 
9. PROBABILITY SUMMATION 

 Intermittent Partial Complete Cataclysmic Σ 
M1 2.2540x10–5 1.1270x10–5 0.5635x10–5 0.2818x10–5 4.2263x10–5

M2 5.4980x10–5 2.7578x10–5 1.3847x10–5 0.6871x10–5 10.3276x10–5

M3 3.2094x10–5 1.6048x10–5 0.8024x10–5 0.4012x10–5 6.0178x10–5

M4 6.6549x10–5 3.3276x10–5 1.6639x10–5 0.8318x10–5 12.4782x10–5

M5 0.8672x10–5 0.4337x10–5 0.2168x10–5 0.1084x10–5 1.6261x10–5

Σ 18.4835x10–5 9.2509x10–5 4.6313x10–5 2.3103x10–5 34.6760x10–5

Table 32 WACSS Probability Summation 

The example Probability Summation demonstrated in Table 32 serves as an 

illustration to the dissertation model in Chapter V.E.3.b and process Step 5. Action 7. 
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Frequency Definition Probability x10–5

ALWAYS The system will each time it is executed. > 50.00 
FREQUENT The system will most likely fail when 

executed. 
50.00 

LIKELY The system will likely fail when 
executed. 

25.00 

PERIODICALLY  The system will periodically fail when 
executed. 

10.00 

OCCASIONAL The system will occasionally fail when 
executed. 

2.50 

SELDOM The system will seldom fail when 
executed. 

0.75 

SPORADICALLY The system will fail sporadically when 
they are executed. 

0.20 

UNLIKELY The system is unlikely to fail when 
executed. 

0.05 

NEVER The system will never fail when executed. 0.00 

Table 33 WACSS System Failure Definition Table 

The example System Failure Definition Table demonstrated in Table 33 serves as 

an illustration to the dissertation model in Chapter V.E.3.b and process Steps 6.2 and 6.3. 
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 Intermittent Partial Complete Cataclysmic Σ 

M1 E F F F D 
M2 D E E F D 
M3 D E E F D 
M4 D D E E C 
M5 E F G G E 
Σ C D D E B 

Table 35 WACSS System Failure Probability Letter Designation. 

The example System Failure Probability Letter Designation demonstrated in 

Table 35 serves as an illustration to the dissertation model in Chapter V.E.3.b and process 

Steps 6.2 and 6.3 

10. SAFETY ASSESSMENT INDEX SUMMATION RESULTS 

M1 Signal incompatibility / feedback to the Aircraft Data–Bus 
P Intermittent E – Occasionally 
P Partial F – Seldom 
P Critical F – Seldom 
P Cataclysmic F – Seldom 
ΣP D – Periodically 
ΣF F1^O3, F2^P3 
H1 Aviation Data–Bus unable to process flight data 

C1 Inability to complete mission tasking, risk to friendly force 
protection, risk to own protection. 
V2 II – Critical 
S Intermittent Significantly Unsafe 
S Partial Moderately Unsafe 
S Critical Moderately Unsafe 
S Cataclysmic Moderately Unsafe 
ΣS Highly Unsafe 

C2 Inability to control aircraft – Loss of Airframe, Loss of Aircrew 
V1 I – Catastrophic 
S Intermittent Significantly Unsafe 
S Partial Moderately Unsafe 
S Critical Moderately Unsafe 
S Cataclysmic Moderately Unsafe 
ΣP Highly Unsafe 

C3 Significant damage to vulnerable aviation software systems on 
the data–bus 
V3 III – Marginal / Moderate 
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S Intermittent Moderately Unsafe 
S Partial Minor Unsafe Issues 
S Critical Minor Unsafe Issues 
S Cataclysmic Minor Unsafe Issues 
ΣP Significantly Unsafe 

C4 Minor damage to vulnerable aviation software systems on the 
data–bus 
V4 IV – Negligible 
S Intermittent Minor Unsafe Issues 
S Partial Minor Unsafe Issues 
S Critical Minor Unsafe Issues 
S Cataclysmic Minor Unsafe Issues 
ΣP Moderately Unsafe 

M2 Weapon fusing to detonate too early after weapon’s release 
P Intermittent D – Periodically 
P Partial E – Occasionally 
P Critical E – Occasionally 
P Cataclysmic F – Seldom 
ΣP D – Periodically 
ΣF F3^P5, F4^( I2, P1, O1, I6, P3 ), F5^( I1, P1, O1, I6, P3 ), F6^( O4, I8, 

P4, O6, I11 ), F7^O10 
H2 Weapon could inadvertently detonate close to delivery aircraft 

C5 Loss of Airframe, Loss of Aircrew 
V1 I – Catastrophic 
S Intermittent Highly Unsafe 
S Partial Significantly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Moderately Unsafe 
ΣS Highly Unsafe 

C1 Inability to complete mission tasking, risk to friendly force 
protection, risk to own protection. 
V2 II – Critical 
S Intermittent Highly Unsafe 
S Partial Significantly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Moderately Unsafe 
ΣS Highly Unsafe 

H3 Weapon not detonating on target 
C6 Cost of Weapon 

V3 III – Marginal / Moderate 
S Intermittent Significantly Unsafe 
S Partial Moderately Unsafe 
S Critical Moderately Unsafe 
S Cataclysmic Minor Unsafe Issues 
ΣS Significantly Unsafe 
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C1 Inability to complete mission tasking, risk to friendly force 
protection, risk to own protection. 
V2 II – Critical 
S Intermittent Highly Unsafe 
S Partial Significantly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Moderately Unsafe 
ΣS Highly Unsafe 

M3 Inability to fuse weapon – Dead Fuse 
P Intermittent D – Periodically 
P Partial E – Occasionally 
P Critical E – Occasionally 
P Cataclysmic F – Seldom 
ΣP D – Periodically 
ΣF F8^P5, F9^O10, F10^P7, F11^( I1, I2, P1, O1, I6, P3 ) 
H3 Weapon not detonating on target 

C6 Cost of Weapon 
V3 III – Marginal / Moderate 
S Intermittent Significantly Unsafe 
S Partial Moderately Unsafe 
S Critical Moderately Unsafe 
S Cataclysmic Minor Unsafe Issues 
ΣS Significantly Unsafe 

C1 Inability to complete mission tasking, risk to friendly force 
protection, risk to own protection 
V2 II – Critical 
S Intermittent Highly Unsafe 
S Partial Significantly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Moderately Unsafe 
ΣS Highly Unsafe 

M4 Inability to prevent weapons release outside of the weapon’s envelope 
P Intermittent D – Periodically 
P Partial D – Periodically 
P Critical E – Occasionally 
P Cataclysmic E – Occasionally 
ΣP C – Likely 
ΣF F12^( I1, I2, P1, O1, I6, P3 ), F13^( I4, I5, P2, O2, I7, P3 ), F14^P7, 

F15^( P7, O12 ), F16^( O4, I8, P4, O8, I13 ) 
H4 Weapon incapable of acquiring and striking the target 

C6 Cost of Weapon 
V3 III – Marginal / Moderate 
S Intermittent Significantly Unsafe 
S Partial Significantly Unsafe 
S Critical Moderately Unsafe 
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S Cataclysmic Moderately Unsafe 
ΣS Highly Unsafe 

H5 Danger to the airframe when deploying a weapon out of proper delivery 
parameters 
C5 Loss of Airframe, Loss of Aircrew 

V1 I – Catastrophic 
S Intermittent Highly Unsafe 
S Partial Highly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Extremely Unsafe 

H6 Weapon could possibly fall on undesired target 
C7 Blue on White (Neutral) Collateral Damage 

V2 II – Critical 
S Intermittent Highly Unsafe 
S Partial Highly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Extremely Unsafe 

H7 Weapon could possibly fall on friendly forces 
C8 Blue on Blue (Friendly Fire) Casualty 

V1 I – Catastrophic 
S Intermittent Highly Unsafe 
S Partial Highly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Extremely Unsafe 

H8 Resulting lack of sufficient weapons to complete mission 
C1 Inability to complete mission tasking, risk to friendly force 

protection, risk to own protection. 
V2 II – Critical 
S Intermittent Highly Unsafe 
S Partial Highly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Extremely Unsafe 

M5 Drop incorrect weapon from pylon 
P Intermittent E – Occasionally 
P Partial F – Seldom 
P Critical G – Sporadically 
P Cataclysmic G – Sporadically 
ΣP E – Occasionally 
ΣF F17^P7, F18^( P4, I9, O8, I13, P7 ) 
H9 Loss of weapon due to incorrect targeting and delivery parameters 

C6 Cost of Weapon 
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V3 III – Marginal / Moderate 
S Intermittent Moderately Unsafe 
S Partial Minor Unsafe Issues 
S Critical Minor Unsafe Issues 
S Cataclysmic Minor Unsafe Issues 
ΣS Moderately Unsafe 

H5 Danger to the airframe when deploying a weapon out of proper delivery 
parameters 
C5 Loss of Airframe, Loss of Aircrew. 

V1 I – Catastrophic 
P Intermittent Significantly Unsafe 
P Partial Moderately Unsafe 
P Critical Minor Unsafe Issues 
P Cataclysmic Minor Unsafe Issues 
ΣP Significantly Unsafe 

H6 Weapon could possibly fall on undesired target 
C7 Blue on White (Neutral) Collateral Damage 

V2 II – Critical 
P Intermittent Significantly Unsafe 
P Partial Moderately Unsafe 
P Critical Minor Unsafe Issues 
P Cataclysmic Minor Unsafe Issues 
ΣP Significantly Unsafe 

H7 Weapon could possibly fall on friendly forces 
C8 Blue on Blue (Friendly Fire) Casualty 

V1 I – Catastrophic 
P Intermittent Significantly Unsafe 
P Partial Moderately Unsafe 
P Critical Minor Unsafe Issues 
P Cataclysmic Minor Unsafe Issues 
ΣP Significantly Unsafe 

H8 Resulting lack of sufficient weapons to complete mission 
C1 Inability to complete mission tasking, risk to friendly force 

protection, risk to own protection. 
V2 II – Critical 
P Intermittent Significantly Unsafe 
P Partial Moderately Unsafe 
P Critical Minor Unsafe Issues 
P Cataclysmic Minor Unsafe Issues 
ΣP Significantly Unsafe 

ΣM Failure in the operation of the WACSS 
P Intermittent C – Likely 
P Partial D – Periodically 
P Critical D – Periodically 
P Cataclysmic E – Occasionally 
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ΣP B – Frequent 
H1 Aviation Data–Bus unable to process flight data 

C1 Inability to complete mission tasking, risk to friendly force 
protection, risk to own protection. 
V2 II – Critical 
S Intermittent Extremely Unsafe 
S Partial Highly Unsafe 
S Critical Highly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Extremely Unsafe 

C2 Inability to control aircraft – Loss of Airframe, Loss of Aircrew 
V1 I – Catastrophic 
S Intermittent Extremely Unsafe 
S Partial Highly Unsafe 
S Critical Highly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Unsafe 

C3 Significant damage to vulnerable aviation software systems on 
the data–bus 
V3 III – Marginal / Moderate 
S Intermittent Highly Unsafe 
S Partial Significantly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Moderately Unsafe 
ΣS Extremely Unsafe 

C4 Minor damage to vulnerable aviation software systems on the 
data–bus 
V4 IV – Negligible 
S Intermittent Significantly Unsafe 
S Partial Moderately Unsafe 
S Critical Moderately Unsafe 
S Cataclysmic Minor Unsafe Issues 
ΣS Highly Unsafe 

H2 Weapon could inadvertently detonate close to delivery aircraft 
C5 Loss of Airframe, Loss of Aircrew 

V1 I – Catastrophic 
S Intermittent Extremely Unsafe 
S Partial Highly Unsafe 
S Critical Highly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Unsafe 

C1 Inability to complete mission tasking, risk to friendly force 
protection, risk to own protection. 
V2 II – Critical 
S Intermittent Extremely Unsafe 
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S Partial Highly Unsafe 
S Critical Highly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Extremely Unsafe 

H3 Weapon not detonating on target 
C6 Cost of Weapon 

V3 III – Marginal / Moderate 
S Intermittent Highly Unsafe 
S Partial Significantly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Moderately Unsafe 
ΣS Extremely Unsafe 

C1 Inability to complete mission tasking, risk to friendly force 
protection, risk to own protection 
V2 II – Critical 
S Intermittent Extremely Unsafe 
S Partial Highly Unsafe 
S Critical Highly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Extremely Unsafe 

H4 Weapon incapable of acquiring and striking the target 
C6 Cost of Weapon 

V3 III – Marginal / Moderate 
S Intermittent Highly Unsafe 
S Partial Significantly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Moderately Unsafe 
ΣS Extremely Unsafe 

H5 Danger to the airframe when deploying a weapon out of proper delivery 
parameters 
C5 Loss of Airframe, Loss of Aircrew. 

V1 I – Catastrophic 
S Intermittent Extremely Unsafe 
S Partial Highly Unsafe 
S Critical Highly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Unsafe 

H6 Weapon could possibly fall on undesired target 
C7 Blue on White (Neutral) Collateral Damage 

V2 II – Critical 
S Intermittent Extremely Unsafe 
S Partial Highly Unsafe 
S Critical Highly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Extremely Unsafe 
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H7 Weapon could possibly fall on friendly forces 
C8 Blue on Blue (Friendly Fire) Casualty 

V1 I – Catastrophic 
S Intermittent Extremely Unsafe 
S Partial Highly Unsafe 
S Critical Highly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Unsafe 

H8 Resulting lack of sufficient weapons to complete mission 
C1 Inability to complete mission tasking, risk to friendly force 

protection, risk to own protection. 
V2 II – Critical 
S Intermittent Extremely Unsafe 
S Partial Highly Unsafe 
S Critical Highly Unsafe 
S Cataclysmic Significantly Unsafe 
ΣS Extremely Unsafe 

H9 Loss of weapon due to incorrect targeting and delivery parameters 
C6 Cost of Weapon 

V3 III – Marginal / Moderate 
S Intermittent Highly Unsafe 
S Partial Significantly Unsafe 
S Critical Significantly Unsafe 
S Cataclysmic Moderately Unsafe 
ΣS Extremely Unsafe 
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C1 II E II F II F II F II D 

C2 I E I F I F I F I D 

C3 III E III F III F III F III D 
F1^O3, F2^P3 M1 H1 

C4 IV E IV F IV F IV F IV D 

C5 I D I E I E I F I D 
H2 

C1 II D II E II E II F II D 

C6 III D III E III E III F III D 

F3^P5, F4^( I2, P1, O1, I6, 
P3 ), F5^( I1, P1, O1, I6, P3 ), 

F6^( O4, I8, P4, O6, I11 ), 
F7^O10 

M2 

H3 
C1 II D II E II E II F II D 

C6 III D III E III E III F III D 
F8^P5, F9^O10, F10^P7, 

F11^( I1, I2, P1, O1, I6, P3 ) 
M3 H3 

C1 II D II E II E II F II D 

H4 C6 III D III D III E III E III C 

H5 C5 I D I D I E I E I C 

H6 C7 II D II D II E II E II C 

H7 C8 I D I D I E I E I C 

F12^( I1, I2, P1, O1, I6, P3 ), 
F13^( I4, I5, P2, O2, I7, P3 ), 

F14^P7, F15^( P7, O12 ), 
F16^( O4, I8, P4, O8, I13 ) 

M4 

H8 C1 II D II D II E II E II C 

H9 C6 III E III F III G III G III E 

H5 C5 I E I F I G I G I E 

H6 C7 II E II F II G II G II E 

H7 C8 I E I F I G I G I E 

F17^P7, F18^( P4, I9, O8, I13, 
P7 ) 

M5 

H8 C1 II E II F II G II G II E 

Table 36 WACSS Malfunction to Safety Assessment 

The example Malfunction to Safety Assessment Table demonstrated in Table 36 

serves as an illustration to the dissertation model in Chapter V.E.3.b and process Step 6. 

Action 3.  The Malfunction to Safety Assessment and the corresponding Hazard to 

Consequence intersection is obtained through the relationship earlier introduced with the 

concept of the Safety Assessment Index as [ S = Σ P(H) * C(H) ] in Equation 1.  Using 

the M1, Intermittent Case, for Consequence C3 as F1^O3 → M1: 
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Where: 

Pe O3 0.40 
Pf Intermittent F1 2.5000x10–5 

Intermittent (2.5000x10–5 * 0.40) = 1.0000x10–5 ∴ 
 
With the resultant value entered into Table 33, to obtain to a Frequency of 

“OCCASIONAL.”  The Occasional value can be entered into the Probability axis of the 

Probability vs. Severity values of Table 34 with a Severity axis value of “Moderate”, 

corresponding to the severity of the applicable causality.  The resulting intersection 

derives a value of III E or “Moderate,” corresponds to the degree for which the system 

is determined unsafe.  The textual definition of “Moderate” can be then referenced back 

to the Consequence Severity Categories defined in Table 21 of the example. 

11. PROCESS PROCEDURES 

Step 1. Action 1. – System Task / Safety Requirement Analysis – Identify the 

primary safety requirements of the system through a review of concept level 

requirements, including system objects, properties, tasks, and event.  Identify system 

safety requirements as they pertain to system state and operating environment.  

Additional safety requirements may be identified using historical precedents and 

rationalization from similar systems.  System requirements should be inspected for 

completeness and the inclusion of system safety logic controls and interlocks, where 

applicable.  Assessments should be made to evaluate size, time, effort, defects, and 

system complexity. 

Step 1. Action 2. – Hazard Identification – Perform a hazard identification of 

the software system based on concept level system requirements, system tasks, and 

historical precedents.  Identification includes identifying the Hazards, Consequences, 

and Malfunctions potentially occurring from the three states of hazard occurrence. 

Step 2. Action 1. – Development of Consequence Severity Categories – Develop 

a prioritized list of Consequence Severity Categories, ranging from the most severe to 
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the least severe possible consequence.  Severity categories should be well defined to 

eliminate confusion and provide distinct boundaries between. 

Step 2. Action 2. – Initial Hazard Assessment – Perform an initial hazard 

assessment of the system by classifying hazards according to Consequence Severity, 

based on an agreed table of Consequence Severity Categories. 

Step 3. Action 1. – Choose a Process Depiction Model – Determine the optimal 

process depiction model to perform a safety assessment of the system.  This process 

model should be capable of depicting requirement process flow, logic decisions, 

conflict and recovery, and the isolation of function failure to hazard execution. 

Step 3. Action 2. – Identify Objects Required to Populate the Process Model – 

Determine the initial set of objects required to populate the process model identified in 

Step 3.1. using system requirements identified in Step 1.1.  Once object sets are 

identified, populate sets with applicable high–level object items and properties.  Items 

and properties include, but are not limited to, process inputs, outputs, and connections. 

Step 3. Action 3. – Pictorially Map the System Process – In accordance with the 

process model identified in Step 3.1., and process objects identified in Step 3.2., map 

the system process, to include all high–level system processes, inputs, outputs, and 

limits. 

Step 4. Action 1. – Identify and Match corresponding Failures to Malfunctions.  

– In accordance with the malfunctions identified in Step 1.2., and process objects 

outlined in Step 3.2., identify the potential system failures that could eventually result 

in identified safety–related malfunctions.  If identified failures relate to malfunctions 

not previously identified, return, and repeat the system assessment from Step 1, Action 

2.  Identified failures are then matched to specific process objects. 

Step 4. Action 2. – Add Identified Failures to the System Process Map – Using 

the process map completed in Step 3.3., and failures identified in Step 4.1., add 
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identified failures to their corresponding locations on the process map using agreed 

process graph symbology. 

Step 5. Action 1. – Development of Failure Severity Categories – Develop a 

prioritized list of Object Failure Severity Categories with applicable definitions.  Using 

Failure Modes, Effects, and Criticality Analysis (FMECA)352 techniques, severities 

shall define the types of failures that a specific object could potentially experience, 

ranging from the benign to the catastrophic, and the potential effect of that failure on 

the system as a whole.  As the assessment is designed to evaluate system safety, it is 

possible to disregard object failure types that do not relate or result in hazardous events. 

Step 5. Action 2. – Development of Execution Probability Definition Categories 

– Develop a prioritized list of Execution Probability Definition Categories with 

applicable probability levels, frequency keywords, and definitions. 

Step 5. Action 3. – Assign Execution Probabilities to System Objects – Using the 

Process Map generated in Step 3.3., assign Execution Probabilities to all system objects 

that relate to system failures identified in Steps 4.1. and 4.2.  Execution Probabilities 

should be based on system inspection, historical precedents, and examination. 

Step 5. Action 4. – Development of Object Failure Probability Definition 

Categories – Develop a prioritized list of Failure Probability Definition Categories with 

applicable probability levels, frequency keywords, and definitions as they apply to 

specific objects within the system. 

Step 5. Action 5. – Assign Failure Probabilities to System Objects – Using the 

Process Map generated in Step 3.3., the Failure Process Map from Step 4.2., and 

Failure Severity Categories defined in Step 5.1., assign Failure Probabilities to all 

system objects that relate to system failures identified in Steps 4.1. and 4.2. for each 

                                                                                                                                                 
352  NASA/SP—2000–6110, Failure Modes and Effects Analysis (FMEA), A Bibliography, National 

Aeronautics and Space Administration; July 2000. 
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severity of failure.  Failure Probabilities should be based on system inspection, 

historical precedents, and examination. 

Step 5. Action 6. – Determine Possible System Hazard Flow – Using the Process 

Map generated in Step 3.3., the Failure Process Map from Step 4.2., and the Failure to 

Malfunction Identification of Step 4.1., determine the possible System to Hazard 

Process Flow.  Such a Process Flow should include all system objects that could 

potentially result in a malfunction and eventually a failure. 

Step 5. Action 7. – Determine Failure Probability for each Malfunction – Using 

the Object Failure Probabilities from Step 5.5. and the Hazard Flow generated in Step 

5.6., determine the cause and effect failure probability of the system.  System 

Probability should include consideration of all reliant or dependent objects to the 

system process. 

Step 6. Action 1. – Development of System Failure Probability Definition 

Categories – Develop a prioritized list of Failure Probability Definition Categories with 

applicable probability levels, frequency keywords, and definitions as they apply to the 

system as a whole. 

Step 6. Action 2. – Development of the Probability vs. Severity Table – Develop 

a two dimensional table representing System Failure Probability on the Horizontal 

Axis and Hazard Criticality on the Vertical Axis.  Assign applicable safety values to 

table cells to represent the safety or un–safety of the system based on each occurrence 

and corresponding safety level for a given intersection scenario. 

Step 6. Action 3. – Determination of the Safety Assessment Index (SAI) – Using 

the Probability vs. Severity Table developed in Step 6.1., and Failure Summations from 

Step 5, determine the SAI for malfunctions and the summation of the system by the 

intersection of event probability to hazard severity.  SAI results should then be 

displayed using the method most practicable to the evaluation requirements. 
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Step 7. Action 1. – Determine Required Improvements – Determine the system 

improvements required to decrease independent and system SAI values to an 

acceptable level, identifying appropriate controls of Avoidance, Reduction, Spreading, 

and/or Transference to each element.  Identify quantitative improvement goals for each 

object that is to be improved, countered by required resources, and cost vs. benefits of 

the actual improvement. 

Step 7. Action 2. – Incorporate Safety Controls – Incorporate the Safety 

Controls identified in Step 7.1. into the Software System.  Changes should be well 

documented in requirement specifications and code development specifications.  Any 

refinements and improvements should take into consideration their effect on present 

objects as well as any related or reliant objects within the system. 

Step 8. Action 1. – Determine the Subjective Elements to System Safety 

Development.  Determine the subjective elements to system development that relate to 

safety and the prevention of a hazardous event.  Determine applicable measures and 

definitions to classify and assess elements for their potential effect to the system. 

Step 8. Action 2. – Evaluate System Subjective Elements.  Evaluate the software 

system for elements identified in Step 8.1.  Assign a grade or measure to system 

elements indicating their compliance to assigned definitions, derived from Step 2 

Action 1 and Step 5, Actions 1 through 7.  Summarize evaluated elements to determine 

the overall effect of subjective elements on software system safety. 

Step 9. – Supervise the Safety Development – Using accepted methods of 

supervision and software management, supervise the development of the software 

system to ensure compliance with the principles of safety development.  Ensure 

compliance with applicable development methods, system requirements, and safety 

assessments.  Ensure that system developmental failures are identified and remedied as 

soon as possible in the current or next development cycle, or are acknowledged for  
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their fragility to customers.  At the completion of the current developmental cycle, 

commence where applicable, the next successive cycle and Step 1.1 of the Safety 

Assessment. 
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