

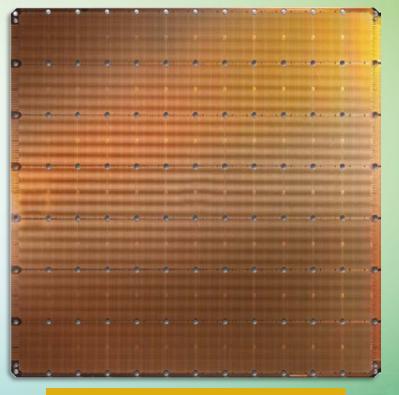
Probe Card Total Cost of Ownership Consumable economics in the Era of Complexity

Steve Ledford Eric Shoemaker

Steve Ledford & Eric Shoemaker (Teradyne – USA)

Aug. 30 – Sep. 1. 202

AI & HPC Driving new Economics


"Cloud computing and storage costs dropping ~50% every 3 years"

Steve Ledford & Eric Shoemaker (Teradyne – USA)

High Performance Computing Enabled by N7 and N5 Complexity

AMD Epyc

39B Transistors 64 cores

Xilinx Versal

37B Transistors 3.3M logic cells

nVidia Ampere

54B Transistors 6912 CUDA cores

Cerebras WSE2

2600B Transistors Wafer Scale Engine

Sources: Wikipedia, Company Websites

Steve Ledford & Eric Shoemaker (Teradyne – USA)

Semiconductor Test: A New Era of Complexity 1990 1995 2000 2005 2010 2015 2020 2025 0.8um 14nm 2-3nm 0.35um 130nm 65nm 28nm 5nm Era of Complexity

- **Era of Functionality**
- Rapid Data Rates increases
- Mixed signal CMOS
- High rate of technological obsolescence for ATE

Era of Capital Efficiency

- Standards based interfaces (DDR, PCI, USB)
- Innovation in DFT (Scan Comp, BIST, Loopback)
- Rapid increase in parallel test

- Transistor counts grow faster than DFT
- Site count increase blocked by interface complexity
- Short market windows for complex devices

Steve Ledford & Eric Shoemaker (Teradyne – USA)

Interface Technical Complexity Check-in

SWTest | Aug. 30 - Sep. 1, 2021

"2 x 4 Scaling" = 2x pins, 2x performance, every 4 years

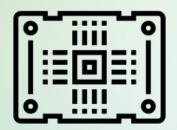
Complexity trends are on pace to be at 2022 targets (1 cycle) or in some cases beyond

	Workshop afer Test Workshop	SWTW SW T
Pin De		2.0.1.8
I/O S		Device Interface Next D
Device	Steve Ledford Teradyne	TERADYNE
Ther]	June 3

Steve Ledford & Eric Shoemaker

(Teradyne – USA)

		2018	2022	2026
		Level 4	Level 5	Level 6
Pin Density	Pin pitch	90um	70um 🗸	50um
	Total Contact Force	40 Kg	80 Kg 🗸	160 Kg
I/O Speed	Digital	32 Gpbs	64 Gbps 🗸	128 Gbps
	RF / mmWave	< 12 GHz	29 GHz 🗸	+60 GHz
Device Power	Main power	900 mV	750 mV 🗸	625 mV
	Single Rail	35A	50A 🗸	100A
	Impedance	2.2 mOhm	1.4 mOhm 🗸	0.8 mOhm
Thermal	Self Heating	75 W	150 W 🗸	300 W
	Operating Range	0 to +80C	0 to +105C 🗸	-20 to +125C
Most Expensive Probe Card		\$400K *	+\$500K	+\$700K
* Source: VLSI Research				2


Complexity Drives Cost Management and Development Paradigms

- The last major look at cost management was the ISMI Probe Card Cost of Ownership model (2007)
 - In 2007: DRAM single-contact probe cards were just ramping; no SoC in production; Cobra was dominant vertical tech
- 12x increased probe card complexity (14 years of "2x4 scaling") exposes problems and challenges in:
 - Cost modeling and management beyond probe card cost and operational efficiency (ISMI scope)
 - Development process execution and lifecycle management methods and tools to deliver best Total Cost of Ownership

~201	5 Era of Complexity
 "Commodity" Approach Anyone can design; anyone can fab / build Performance & Quality should be equivalent, no matter the supply chain As complexity increases execution degrades and impact to later lifecycle phases increases 	 "System Development": Proposed Integrated design & manufacturing solution Rigorous specification & quality management Integrated certification, repair, maintenance, calibration, Bin-1 validation Scales effectively as complexity increases
Iford & Eric Shoemaker	1 Int

Complexity Impact on Time and Yield

The Total Cost of Ownership (TCoO) model builds on previous models to include the impact to time and entitled yield which are key metrics across the value chain

Interface Eng

- Interface Cost
- Design Errors
- <u>On-Time</u> Delivery (OTD)

Test Eng

- Test <u>Time</u>
- Test Quality (zero escapes)

Ramp Eng

- NPI Bring-up <u>time</u> (TTM)
- Test Stability / Repeatability

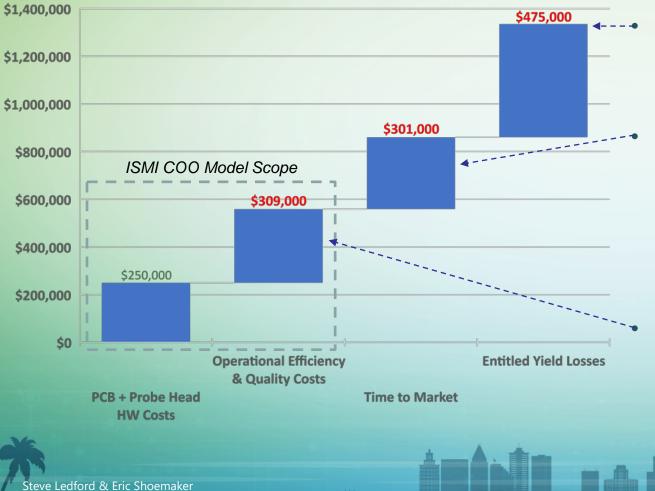
Production Eng

- Ramp-up <u>time</u> (TTV)
- Throughput
- Entitled Yield

Better Performance + Quality + OTD = lower cost of ownership

Steve Ledford & Eric Shoemaker (Teradyne – USA)

KPIs


SWTest | Aug. 30 - Sep. 1, 2021

KPI = Key Performance Indicator TTM = Time to Market TTV = Time to Volume

Case Study: Time and Yield dominate TCoO

SWTest | Aug. 30 – Sep. 1, 2021

Probe Card Total Cost of Ownership Case Study: "<u>Commodity</u>" Approach

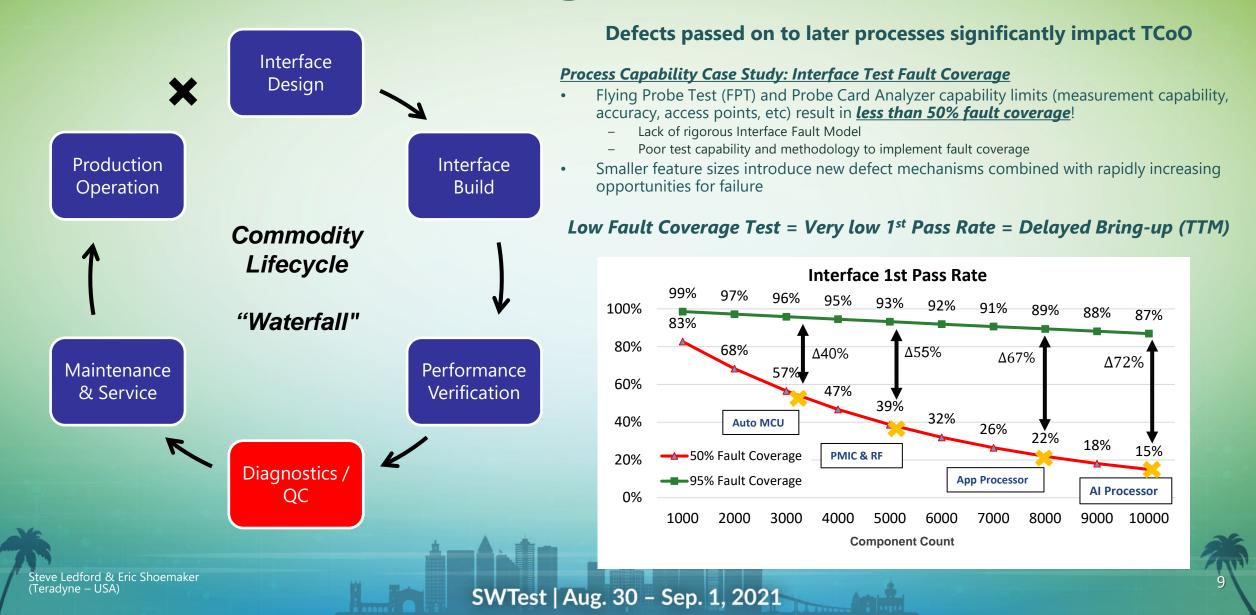
(Teradyne – USA)

"Commodity Paradigm" leads to hidden costs (time and yield) that are <u>2 – 3x greater than the cost of the probe card:</u>

-• Entitled Yield Losses: 1.5 – 2x probe card cost!

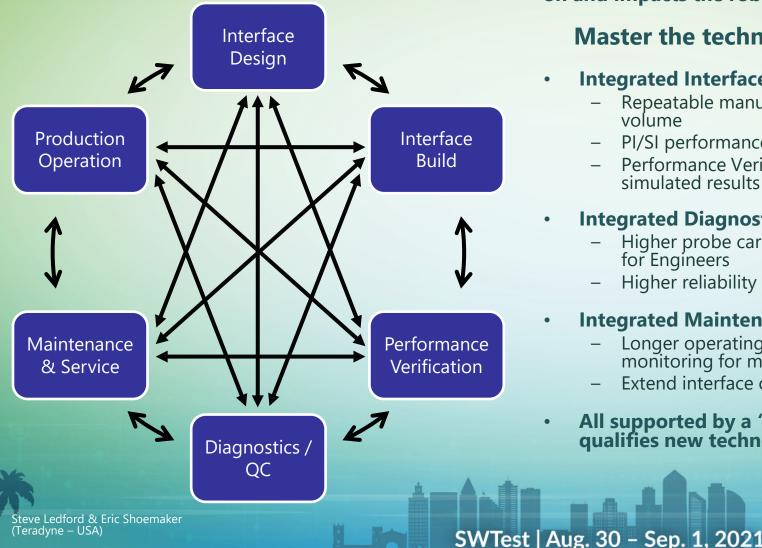
 Interface performance limits device measurement accuracy, resolution, and repeatability

<u>Time to Market Impacts: 1 – 1.5x probe card cost!</u>


- Opportunity cost of lost sales in a project's market lifecycle (mobile in particular)
- Engineering time on test cell / HW / program debug during bring-up; and repeated Bin-1 attempts before & after repairs

Previous ISMI cost model addressed OEE & Quality:

- Same principles but due to technical complexity the strategy and means to execute need to be updated
- Includes: Site shutdown, retest, spares, needle life, etc



TCoO Killer: Unmanaged & Undetected Defects

"System Development" Principles

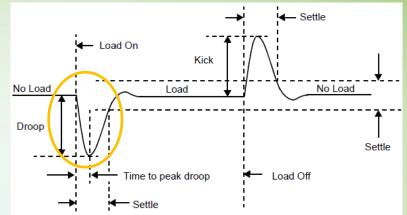
Systems Development Lifecycle

<u>Key Principle</u>: Each major phase of the Interface lifecycle is dependent on and impacts the robustness of the others

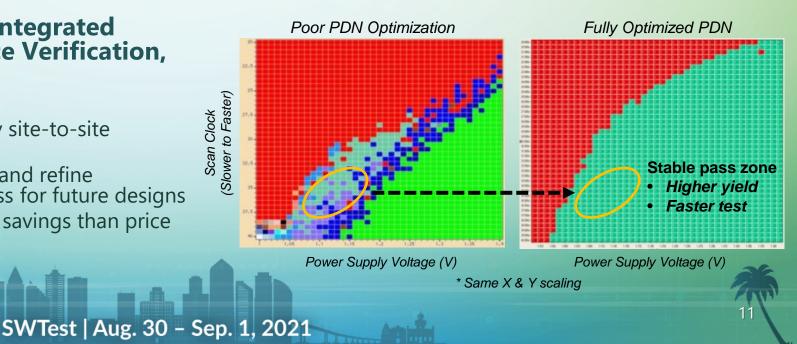
Master the technical "white space" across the life cycle

Integrated Interface Design enables:

- Repeatable manufacturing yields for on-time delivery & ability to ramp volume
- PI/SI performance for maximum entitled yields in Production
- Performance Verification can validate the interface truly performs to the simulated results and trust in the test results


Integrated Diagnostics & QC enables:

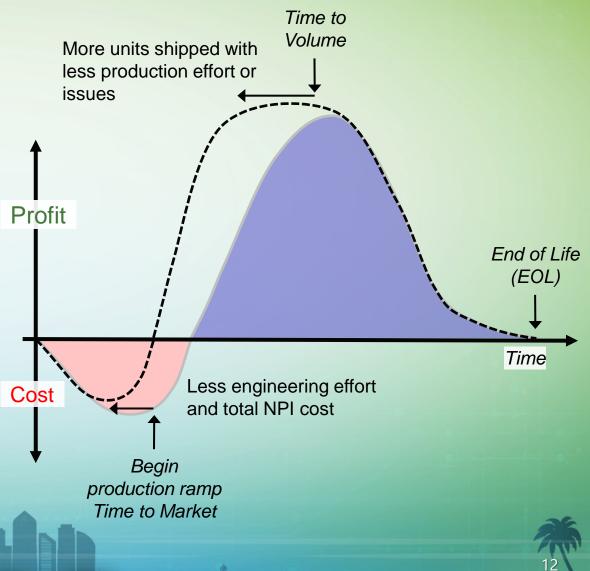
- Higher probe card validation test coverage and faster bring-up & repairs for Engineers
- Higher reliability and calibrated/characterized signal paths
- **Integrated Maintenance and Service enables:**
 - Longer operating life of Probe Cards & needles, and real-time monitoring for maintenance
 - Extend interface operating life
- All supported by a "Systems Engineering Capability" roadmap that qualifies new technologies off the project critical path



Case Study: Poor Performance impacts Entitled Yield

- **Problem:** Over-kill of good die in highperformance application
 - Lost revenue, higher cost of goods sold, longer test times
- Root Cause: Insufficient test margin due to poor power integrity
 - Poor Power Integrity response (droop and kick) in highcurrent operation (ex: high-speed scan)
 - Wide site-to-site variation and poor test result stability
- "System Development" Approach: Integrated Design, Manufacturing, Performance Verification, and QC
 - IC yield increase of +1%
 - Excellent parallel test stability enabled by site-to-site matching of +/- 2%.
 - Full Performance Verification to validate and refine simulation models and fabrication process for future designs
 - Yield improvement generated more cost savings than price of the Probe Cards

Time domain response of the Power Supply to transistor switching Large droop → Yield below targets and/or lower device specs


Steve Ledford & Eric Shoemaker (Teradyne – USA)

Case Study: Undetected defects impact Time to Market & Volume

- Problem: Defective probe cards lead to wasted Engineering time "chasing ghosts" in silicon and test program, resulting in NPI bring-up delays
 - Engineers dealing with untested silicon, new test program, and new HW all at the same time
 - Any probe card issues introduce random, unpredictable defects into a complex debug process during a time-sensitive period trying to get silicon into production
- Root Cause: Unknown defects create unpredictable test results
 - Low fault coverage and measurement capability for Flying Probe test (FPT) and Probe Card Analyzer
 - No "golden units" available to "Bin-1 certify" the probe card and eliminate the probe card from the fault tree
- "System Development" Approach: Integrated
 Diagnostics into Design, QC, Service, and Production
 - NPI bring-up from "days to hours" and ramp from "weeks to days"
 - Significant savings in NPI Engineering and higher total Revenue

Steve Ledford & Eric Shoemaker

(Teradyne – USA)

Case Study: Your Probe Card Can Pay For Itself!

TCoO quantifies hidden costs and inefficiencies that can be 2-3x the cost of the probe card

> Probe Card Total Cost of Ownership Case Study: "<u>Commodity</u>" Approach

\$1,400,000 \$1,400,000 \$475.000 \$1,200,000 \$1,200,000 \$356,000 \$1,000,000 \$1,000,000 \$301,000 \$800.000 \$800,000 \$162,000 \$309,000 \$600,000 \$600,000 \$231.000 \$400,000 \$400,000 \$275,000 \$250,000 \$200,000 \$200,000 **\$0 \$0 Operational Efficiency Entitled Yield Losses Operational Efficiency Entitled Yield Losses** & Quality Costs & Quality Costs **PCB + Probe Head Time to Market** PCB + Probe Head **Time to Market HW Costs HW Costs** Steve Ledford & Eric Shoemaker (Teradyne – USA) SWTest | Aug. 30 - Sep. 1, 2021

A probe card that is on-time, defect free, with full performance can drive savings greater than its cost!

Probe Card Total Cost of Ownership

Case Study: "System Development" Approach

Case Study: Model Inputs & Results

Model Assumptions	"Commodity"	"System Development"	Impact
Expected Product Lifetime Revenue	\$750M	\$750M	
Production lifetime (years)	1.5	1.5	
Product Net Profit Margin target	40%	40%	
Expected Total Test Cells in Production	15	15	
Total Probe Card Cost	\$250,000	\$275,000	Increase 10%
Engineering Labor Rate (hourly)	\$125	\$125	
Test Cell Hourly Rate (hourly)	\$150	\$150	
HW Bring-up Engineering Effort (days)	45	33.75	Reduced 25%
Production Test Cell OEE Expected target	85%	85%	
Production Release Timing Delay (days)	7	3.5	Reduced 50%
Average Site Shutdown (1 out of X sites)	16	21.28	Improved 33%
Typical HW Spares Need (1 out of X sets)	10	15	Improved 50%
Probe test time per wafer (hours)	3	3	
Probe Test Time per Touchdown (minutes)	1.5	1.5	
Needle Touchdown Lifetime (cycles)	500,000	665,000	Improved 33%
Wafer Cost	\$7,500	\$7,500	
Modeled probe test yield expectations	85%	85%	
Entitled yield loss (% below model)	3.0%	2.3%	Reduced 25%

Steve Ledford & Eric Shoemaker (Teradyne – USA)

TCoO Key Success Criteria & Impact

Examples of Key Success Criteria

- On-time delivery metrics & execution planning tools including risk mitigation
- ✓ Fault-model-driven diagnostic tools, including signal path and component diagnostic test traceability
- ✓ Visual defect detection coverage & resolution
- Site-to-site simulation measurement results (target <5% variation)
- ✓ Full-board signal-path simulations at speed
- Interface board level RF calibration and program integration
- Needle/Socket performance verification and QC

• Stop "chasing ghosts" during new IC bring-ups in order to stay on schedule

- Is the problem in silicon, software, tester, or probe card?
- Eliminate "Probe Card" from the fault tree and speed up debug, validation, and production release!

Get the entitled yields your design should generate and maximize your test cell throughput

- Don't let the probe cards be the bottleneck in your test measurement capability
- Require full-board simulations and bench validations/characterizations to match

Steve Ledford & Eric Shoemaker (Teradyne – USA)

Conclusion

- "Commodity" approach has significant scaling limitations as complexity increases
 - Delayed product launches (time) and lower performance device limits and specs (yield)
- By applying a "System Development" approach the Probe Card can pay for itself, thereby greatly improving the Total Cost of Ownership (TCoO)
 - Improvements to Time and Yield can return value of 2x to 3x the cost of the probe card
 - Each major phase of the Interface lifecycle is dependent on and impacts the robustness of the others
 - Master the technical "white space" across the life cycle utilizing a fully integrated development process

Best Performance + Quality + OTD = Best Total Cost of Ownership

