
1

Synchronization
Overview and
Case Study on
Arm Architecture
Ker Liu, Zaiping Bie

W H I T E P A P E R

2

Contents

1	 Overview... 3

2	 Synchronization approach on Armv8-A architecture.. 3

	 2.1 Atomic operation.. 3

		 2.1.1 Exclusive load and store... 3

		 2.1.2 LSE Atomic operation... 4

		 2.2 Arm memory ordering.. 5

		 2.3 Arm data access barrier instructions... 5

3	 Case study.. 7

	 3.1 Case1: OpenJDK.. 7

		 3.1.1 Description.. 8

		 3.1.2 Analysis.. 8

		 3.1.3 Solution.. 9

		 3.1.4 Thoughts..10

	 3.2 Case2: DPDK...11

		 3.2.1 Description..11

		 3.2.2 Analysis..12

		 3.2.3 Solution..12

		 3.2.4 Thoughts..13

	 3.3 Case3: MySQL...13

		 3.3.1 Description..13

		 3.3.2 Analysis..13

		 3.3.3 Solution..14

		 3.3.4 Thoughts..14

Appendix A - Memory Model Tool...15

Appendix B - C++ Memory model...18

Acknowledgements...20

References...20

3

1–0verview
The objective of this white paper is to share synchronization knowledge on Arm
architecture. The target reader of this document is those who work on synchronization
with the Arm® architecture.

[Warning] When we are dealing with locking optimizations, we must be extremely
careful about correctness. Bugs caused by synchronization are usually hard to root
cause and the optimized code may crash on other CPUs with different or future
micro-architectures design.

This document also provides information on typical enhancements and offers a
deep-dive case study .

2–Synchronization Approach on Arm®v8-A Architecture
2.1 Atomic operation

Implementing synchronization (lock, mutex etc) requires atomic access.
The Arm architecture defines two types of atomic access:

1.	 Load and store exclusive, which has been supported since the Armv6 architecture release.

2.	 Atomic operation, which was introduced in Armv8.1-A large system extension (LSE).

2.1.1 Exclusive load and store

Arm supports load exclusive and store exclusive access instructions. In the A32 and T32
instruction sets, it is LDREX and STREX, and in the A64 instruction set, it is LDXR
and STXR. These instructions use a try-and-test mechanism to implement atomic access.

LDREX/LDXR - The load exclusive instruction performs a load from an addressed memory
location, the PE (for example, the CPU) also marks the physical address being accessed as
an exclusive access. Store exclusive instructions check for the exclusive access mark.

STREX/STXR - The store exclusive instruction tries a value from a register to memory if
the PE (for example, the CPU) has exclusive access to the memory address. The instruction
returns a status value of 0 if the store was successful, or of 1 if no store was performed.

These instructions can be used by a lock construct, such as a mutex, to avoid race
conditions when writing a lock value. Race conditions can occur in multi-threaded or
multi-core systems, or during interrupt service routine (ISR) conditions.

In hardware, the core includes a logic named the exclusive monitor (sometimes,
an external or global exclusive monitor might also be required). This monitor observes
the core. When the core performs a load exclusive access, it records that fact in the
exclusive monitor. When it performs a store exclusive, it checks whether another store
exclusive has been performed successfully between the load exclusive and this
store exclusive. In this case, the store exclusive fails.

4

Note that STXR is not required in an unlock operation. It is only used when testing and

setting it in a lock operation.

2.1.2 LSE Atomic operation

LSE atomic instructions can be used as an alternative to load-exclusive/store-exclusive
instructions, for example to ease the implementation of atomic memory updates in very
large systems. LSE atomics can be used with a closely coupled cache, sometimes referred
to as near atomics, or further out in the memory system as far atomics.

Unlike LDXR/STXR, which uses try and test mechanism, LSE atomic is a forced atomic
access. The instructions provide an atomic update of register content with memory for a
range of conditions:

•	 Compare and swap instructions, CAS, and CASP. These instructions perform a read from memory 	
				 and compare it against the value held in the first register. If the comparison is equal, the value in
				 the second register is written to memory. If the write is performed, the read and write occur 	
				 atomically. No other modification of the memory location can take place between the read
				 and write.
•		 Atomic memory operation instructions, LD<OP>, and ST<OP>, where <OP> is one of ADD, 	
				 CLR, EOR, SET, SMAX, SMIN, UMAX, and UMIN. Each instruction atomically loads a value from 	
				 memory, performs an operation on the values, and stores the result back to memory. The 		
				 LD<OP> instructions save the originally read value in the destination register of the instruction.
•		 Swap instruction, SWP. This instruction atomically reads a location from memory into a register 	

				 and writes a different supplied value back to the same memory location.

5

2.2 Arm memory ordering

Arm defines a weak memory ordering model, which means that accesses might not occur
in program order. Arm memory consistency model allows:

Type Reorder allowed?

Loads reorder after loads Yes

Loads reorder after stores Yes

Stores reorder after stores Yes

Loads reorder after stores Yes

Atomic reordered with loads Yes

Atomic reordered with stores Yes

Normal memory access before or after normal atomic access could be reordered,
which breaks critical section rules that synchronization using atomic access requires.
The Arm architecture defines barrier instructions to force memory access ordering.
In reality, atomic instructions are used in pair with barrier instructions. Furthermore,
there are some instructions which combine atomic and barrier functionality in one
single instruction.

2.3 Arm data access barrier instructions

The Arm architecture includes barrier instructions to force access order and access

completion at a specific point.

	 DMB – Data Memory Barrier

	 DSB – Data Synchronization Barrier

DMB

Explicit memory accesses before the DMB are observed before any explicit access after

the DMB.
•		 Does not guarantee when the operations happen, just guarantees the order.

6

DSB

A DSB is more restrictive than a DMB.
•		 Use a DSB when necessary, but do not overuse them.

No instruction after a DSB executes until:

•		 All explicit memory accesses before the DSB in program order have completed.

•		 Any outstanding cache/TLB/branch predictor operations complete.

DMB and DSB are two-way barriers, which force the ordering of memory accesses before

and after the barrier instruction. It might be too strong, considering the performance

impact of using DMB and DSB. Armv8-A also introduced load-acquire and store-release

mechanisms, which are used by LDAR and STLR instructions. These are one-way barriers,

which only force ordering in one direction, so they can reduce performance impact in

some cases.

Load-Acquire (LDAR)

•		 All accesses after the LDAR are observable by the memory system after the LDAR executes.

•		 Accesses before the LDAR are not affected.

Store-Release (STLR)

•		 All accesses before the STLR are observable by the memory system before
				 the STLR executes.
•		 Accesses after the STLR are not affected.

Armv8 LDAR and STLR implement RCsc (Release Consistency sequentially consistent

https://en.wikipedia.org/wiki/Consistency_model#Release_consistency:_RCsc_and_RCpc).

This means that a store-release followed by a load-acquire cannot be reordered with

respect to each other.

https://en.wikipedia.org/wiki/Consistency_model#Release_consistency:_RCsc_and_RCpc

7

Armv8.3-A introduced the LDAPR (Load-Acquire RCpc Register) instruction to implement

RCpc (Release Consistency processor consistent, see above link). This means that a store-

release followed by a load-acquire to a different address can be reordered with respect to

each other.

Some atomic instructions combine atomic and load-acquire/store-release functionality.

For example:

A64 Instruction Description

LDAXR Load acquire and exclusive

STLXR Store release and exclusive

CASA CAS atomic and acquire

CASL CAS atomic and release

CASAL CAS atomic and acquire-release

The barrier instructions are employed in the previous lock or unlock implementation

examples:

1.	 For the first example, DMB is used in both lock and unlock routines to
		 ensure memory ordering.

2.	 For the second example, LDUMAXA, which is with load-acquire attribute was
		 used in lock; STLR, which is with store-release attribute was used in unlock.

3–Use Case Study
In this section, we look at several use cases on how new memory ordering instructions can
help improve existing code. The intention of these examples is to provide more background,
history, and details on the reason for the code changes, which can help inspire readers of
this white paper to make similar changes in future.

3.1 Case1: OpenJDK

A G1GC bug is reported which triggers an OpenJDK crash during a Cassandra stress test.
G1 garbage collector(G1GC) is a server-style garbage collector, targeted for multi-processor
machines with large memories.

8

3.1.1 Description

AArch64 OpenJDK8u crashed at OtherRegionsTable::add_reference() because of BUS_
ADRALN or SEGV_MAPERR during Cassandra load test.
The problematic frame listed as follows:

 # A fatal error has been detected by the Java Runtime Environment:

 # SIGBUS (0x7) at pc=0x0000ffff8da2e554, pid=35024, tid=0x0000ffff6a9ff1d0

 Stack: [0x0000ffff6a800000,0x0000ffff6aa00000], sp=0x0000ffff6a9fe5d0, free space=2041k

 Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code)

 V [libjvm.so+0x51f554] OtherRegionsTable::add_reference(void*, int)+0xbc

 V [libjvm.so+0x533ae4] InstanceKlass::oop_oop_iterate_nv(oopDesc*, 		

 FilterOutOfRegionClosure*)+0xe4

 V [libjvm.so+0x5198e8] HeapRegion::oops_on_card_seq_iterate_careful(MemRegion,

 FilterOutOfRegionClosure*, bool, signed char*)+0x488

 V [libjvm.so+0x4be9b4] G1RemSet::refine_card(signed char*, unsigned int, bool) [clone

 .part.73] [clone .constprop.114]+0x15c

 V [libjvm.so+0x4a65a0] RefineCardTableEntryClosure::do_card_ptr(signed char*, unsigned

 int)+0x30

 V [libjvm.so+0x462f08] DirtyCardQueueSet::apply_closure_to_completed

 buffer(CardTableEntryClosure*, unsigned int, int, bool)+0xe0

 V [libjvm.so+0x3d6554] ConcurrentG1RefineThread::run()+0x154

 V [libjvm.so+0x7971bc] java_start(Thread*)+0xf4

 C [libpthread.so.0+0x6fb4] start_thread+0xa4

3.1.2 Analysis

For G1GC, the heap is partitioned into a set of equal-sized heap regions (Eden-E,
Survivor-S, Old-O, Humongous-H all represent different logical generation types),
and each has a contiguous range of virtual memory.

The reference from Old Generation to Young Generation is maintained by the data
structure remembered set (RemSet). This structure can be concurrently accessed by
multiple GC threads.

The earlier buggy function (marked with red text) is operating on this structure and crashes.

Pseudocode for the bug-related code path:

 1 OtherRegionsTable::add_reference(index)

 2 prt_pointer = PerRegionTable_pointer_array[index]

 3 if prt_pointer is not null:

 4 read prt_pointer reference PerRegionTable structure

 5 else:

 6 alloc PerRegionTable structure which address is prt_pointer

 7 write PerRegionTable structure

 8 PerRegionTable_pointer_array[index] = prt_pointer

9

This pseudo function is executed by different software threads to operate the
PerRegionTable structure simultaneously. The bug code is related to line 7 and line 8.
The content of the prt structure is available to the other thread once it is put into regions
array, but in the Arm architecture, the other thread can see line 8 first before it sees line 7.
For this scenario, one thread accesses prt structure’s contents, which may still not be ready,
then the crash or error happens. It may be easier to reproduce this condition on systems
with high core counts.

Regarding the read operation, there is an address dependency between the line 2 read
structure reference and the line 4 read structure data. The read order can be guaranteed.

3.1.3 Solution

The fix is straightforward. Replace the direct assignment with store-release to enhance the

store order. The concurrent thread does not use the item contents until it has been fully

populated.

Updated code:

 1 OtherRegionsTable::add_reference(index)

 2 prt_pointer = PerRegionTable_pointer_array[index]

 3 if prt_pointer is not null:

 4 read prt_pointer reference PerRegionTable structure

 5 else:

 6 alloc PerRegionTable structure which address is prt_pointer

 7 write PerRegionTable structure

 8 PerRegionTable_pointer_array[index] = prt_pointer

 // Need store release semantic here.

 OrderAccess::release_store(PerRegionTable_pointer_array [index], prt_pointer)

As the following figure shows, STLR prohibits all the code before line 8 to cross it.

Therefore, the contents of prt are populated before it is visible to other thread.

Result: after we apply this patch, the issue disappears, and has not been reproduced.

This issue has been fixed after OpenJDK8u172 (include).

Patch link:

http://hg.openjdk.java.net/jdk8u/jdk8u-dev/hotspot/rev/4edb0f406a2c

http://hg.openjdk.java.net/jdk8u/jdk8u-dev/hotspot/rev/4edb0f406a2c

10

3.1.3.1 Corresponding litmus test
As depicted in Appendix A – Memory Model Tool section, litmus test is a good tool which

has some typical use cases to help understand the memory model for different scenario on

different architectures.

For the OpenJDK case mentioned above, we can use the typical use cases in litmus to

clearly represent the updates made by the following case:

Litmus test results (executed 50000000 times on a certain Arm server) are shown below.

The test results of original code contain some (X0=1; X3=0) cases (51 times in all the

50000000 test), which violate the essential program logic. No such (X0=1; X3=0) violation

cases are found for the fixed code.

3.14 Thoughts	

Memory barrier-related changes should be made very carefully. We must make sure the
code has been well reviewed and heavily tested.

The correctness and performance of synchronization cases must be carefully balanced.
We should first make sure the logic is correct, then go further to improve performance
by eliding redundant barriers or using a lightweight barrier.

In this case, the DMB also works, but it is too heavy and may hurt performance.
Achieving correct and high-performance synchronization requires a deep understanding
of the Arm memory model and related instructions.

As most server software code is written and tested under x86 arch, ported memory
instructions may fail on Arm-based platforms due to memory model differences.
The litmus test suite (Appendix A – Memory Model Tool section) can help with
understanding the memory model and verify the program on different architectures.

11

3.2 Case 2: DPDK

Optimized virtio split ring barriers with 20% performance uplift for PVP(PHY-VM-PHY) case
on AArch64.

Virtio was developed as a standardized open interface for virtual machines (VMs) to access
simplified devices such as block devices and network adapters. The virtio specification
defines a bi-directional notifications mechanism:

•	Available Buffer Notification: Used by the driver to signal there are buffers that are ready for 	
			 processing by the device. Available idx indicates where the driver would put the next descriptor 	
			 entry in the ring.
•	Used Buffer Notification: Used by the device to signal that it has finished processing buffers.
			 Used idx indicates where the device would put the next descriptor entry in the ring.

3.2.1 Description

Before the enhancement, the logics are as follows:

AvailRing:

- Frontend
 update available ring
 rte_smp_wmb()
 update idx of available ring
- Backend
 Load idx of available ring
 rte_smp_rmb()
 Load data of available ring

 UsedRing:

- Backend
 update used ring
 rte_smp_wmb()
 update idx of used ring
- Frontend
 Load idx of used ring
 rte_smp_rmb()
 Load data of used ring

12

The Armv8-based CPU memory model is weakly ordered and its cores support out-of-order
memory instructions. Using rte_smp_wmb() and rte_smp_rmb(), which are two-way barriers,
can make sure the logic is correct.

3.2.2 Analysis

For the previous case, it is possible to enhancement performance further by replacing the

existing two-way barriers with C11 one-way barriers for used index and available index in

split ring.

3.2.3 Solution

Result: replacing the two-way barriers with C11 one-way barriers we can achieve about

a 20% performance improvement.

Patch link: https://patches.dpdk.org/patch/69226/

3.2.3.1 Corresponding litmus test

For the DPDK case mentioned previously, there is also a typical litmus use case to clearly
represent the updates made by this case as follows:

https://patches.dpdk.org/patch/69226/

13

Litmus test results (executed 50000000 times on an Arm server) as shown below.

The results of both tests do not contain (X0=1; X2=0) as expected, and the enhanced

version has advantage on performance aspect (11.30 vs 13.18 seconds runtime).

3.2.4 Thoughts

Two-way barriers can guarantee logical correctness, but they can be too heavy
with respect to memory performance. We can use lightweight barriers (for example:
store-release, load-acquire) to yield better performance.

3.3 Case3: MySQL

Use CAS to improve MySQL performance in high contention workloads.

3.3.1 Description

MySQL currently uses TAS (test and set) to implement a spinlock and its derived mutex.
This implementation slows down the performance of high core-count systems with high
lock contention.

3.3.2 Analysis

This enhancement uses compare and swap (CAS) to implement a spinlock for AArch64.
As the following table shows, TAS uses the GCC built-in function __atomic_exchange
which is compiled as (ldaxr+stlxr+cbnz). And CAS uses __atomic_compare_exchange which
is compiled as (ldaxr+cmp+bne+stlxr). TAS is not efficient on AArch64 compared to CAS,
especially in high core-count systems.

Using TAS means that for each contending thread it must write the lock first. This action
introduces more cache line snoops when using the MESI or MOESI cache coherency
protocol, which extends critical sections and increases memory access traffic.

14

3.3.3 Solution

Patch link:
https://bugs.mysql.com/bug.php?id=88399

Result: Sysbench OLTP showed a ~15% performance improvement.

Note: the result is verified on ARMv8.0 servers. For different micro-arch implementation of
newer ARMv8 version, it is better to run benchmarks to compare the result.

3.3.4 Final Thoughts

There are intricate hardware memory model differences between different computer

architectures. For most cases, it is better for the programmer to stick to programming

language memory models they know (such as Appendix B C++ Memory Model).

And rely on the complier to produce high-efficient and error-free instructions,

other than writing assembly by themselves.

https://bugs.mysql.com/bug.php?id=88399

15

Appendix A - Memory Model Tool
Memory Model Tool (a DIY software suite) is a set of tools for testing memory consistency

models. It helps develop an intuitive understanding of how it works and contains the

following tools:

•	The diy7 tool, which generates litmus test based on different parameters. It takes a list 		
		 of candidate relaxations as input and generates the litmus test.
•	The litmus7 tool, which runs litmus test on specific hardware. It takes the litmus test as 		
		 input and prints the observed execution states.
•	The herd7 tool, which designs and simulates memory models. The herd7 distribution 		

		 already includes some models which we can learn from.

For detailed information, please refer to Ref [3] [4] [5].

We can take mp.litmus (Message Passing litmus test) in herd7 distribution as an example
to learn the usage of Memory Model Tool. First, we access herd7 web interface from
(https://diy.inria.fr/www/). Select “AArch64” and “MP.litmus” as below screenshot and
click on the play button. We, then receive the herd output and event structures.

https://diy.inria.fr/www/

16

The litmus test is the core component of the memory model tool. The diy7 tool can

generate the litmus test and the litmus7 tool can execute the litmus test. For the

“litmus test” frame, please see the explanations as below graph:

In the mp.litmus test, the “PodWW Rfe PodRR Fre” is the examined sequence of

candidate relaxation (memory operation relation). Then, the assembly code is generated

corresponding to the specific candidate relaxations. The last “exists” statement is the final

state to be checked whether existing.

For the herd output, please see the explanations in the graph below:

In the “event structures” frame, there are different figures corresponding to different

execution types, which includes the memory event and their relation arrows. Take the

following figure as an example to explain the basic memory event orders:

17

•	Po: Program order, the order to happen in the same thread.
•	Rf: Read-from, the read operation reads the value which was written to the same location by the 	
			 write operation. We can consider the write happens before the read.
•	Fr: From-read, the write operation writes the value after the read operation reads the 		
			 value from the same location. The read happens before the write.

Besides the memory events orders, we can add the thread (inter or intra) and location
(same or distinct) information to get the candidate relaxation. This candidate relaxation can
be used as input of diy7 tool.

For the “PodWW Rfe PodRR Fre” line in the mp.litmus, each word separated by space is a
candidate relaxation. The brief introduction is as follows:

•	PodWW: two write operations to distinct locations in program order.
•	PodRR: two read operations to distinct locations in program order.
•	Rfe: a read operation that reads a preceding write operation written value from the same location 	
		 on distinct processors.
•	Fre: a write operation that writes a value to the same location after a read operation reads the value 	
			 on distinct processors.

For more details on the candidate relaxations, please see the diy7 tool documentation<link:
http://diy.inria.fr/doc/gen.html>.

We can use the diy7 tool to generate litmus test based on relaxation. For example, this
command generates the message passing litmus test:

~/bin/diyone7 -arch AArch64 “PodWW Rfe PodRR Fre”

The litmus7 tool can be used to execute the litmus test. For example, to run the litmus test
in the file mp.litmus, we execute the command:

~/bin/litmus7 mp.litmus

We can also use litmus7 to generate source code using the following command, which can
be executed on different computers.

~/bin/litmus7 -o mp.tar mp.litmus

For more detailed explanation, refer to the litmus7 tutorial http://diy.inria.fr/doc/litmus.html.

http://diy.inria.fr/doc/litmus.html

18

Appendix B - C++ Memory model
With the advent of programming language (C/C++ or other programming language)
memory models, in most cases, developers can avoid writing architecture-dependent
assembly code. This means developers can write high-quality code in C/C++ or other
programming languages without thinking too much about the architecture differences.

The following are C++ Memory model constants defined in header <atomic>.
https://en.cppreference.com/w/cpp/header/atomic

Value Explanation

memory_order_relaxed
Relaxed operation: there are no synchronization or ordering
constraints imposed on other reads or writes, only the atomicity
of this operation is guaranteed.

memory_order_consume

A load operation with this memory order performs a consume
operation on the affected memory location: no reads or writes in
the current thread dependent on the value currently loaded can
be reordered before this load. Writes to data-dependent variables
in other threads that release the same atomic variable are visible
in the current thread. On most platforms, this affects compiler
optimizations only.

memory_order_acquire

A load operation with this memory order performs the acquire
operation on the affected memory location: no reads or writes in
the current thread can be reordered before this load. All writes
in other threads that release the same atomic variable are visible in
the current thread.

memory_order_release

A store operation with this memory order performs the release
operation: no reads or writes in the current thread can be reordered
after this store. All writes in the current thread are visible in other
threads that acquire the same atomic variable and writes that carry
a dependency into the atomic variable become visible in other
threads that consume the same atomic.

memory_order_acq_rel

A read-modify-write operation with this memory order is both
an acquire operation and a release operation. No memory reads
or writes in the current thread can be reordered before or after
this store. All writes in other threads that release the same atomic
variable are visible before the modification and the modification is
visible in other threads that acquire the same atomic variable.

memory_order_seq_cst

A load operation with this memory order performs an acquire
operation. A store performs a release operation. And a read-modify-
write operation performs both an acquire operation and a release
operation. In addition, a single total order exists in which all threads
observe all modifications in the same order.

https://en.cppreference.com/w/cpp/header/atomic

19

The following table shows the mapping between C++ memory model and
Armv8-A implementation.

Memory type Operation Example
Armv8-A

implementation

Memory_order_
relaxed

Load
Store
RMW

a.load(std::memory_order_relaxed);

Atomic
instruction
without barrier

a.store(1, std::memory_order_relaxed);

a.fetch_add(1,std::memory_order_
relexed);

Memory_order_
acquire

Load
RMW

a.load(std::memory_order_acquire); LDAR/LDAPR

a.fetch_add(1,std::memory_order_
acquire);

LDADDA

Memory_order_release
Store
RMW

a.store(1, std::memory_order_release); STLR

a.fetch_add(1, std::memory_order_
release);

LDADDL

Memory_order_acq_rel RMW
a.fetch_add(1,std::memory_order_acq_
rel);

LDADDAL

Memory_order_seq_
cst

Load
Store
RMW

a.fetch_add(1, std::memory_order_seq_
cst);

LDADDAL

a.store(1, std::memory_order_seq_cst); STLR

a.load(std::memory_order_seq_cst); LDAR

20

Acknowledgments
We would like to thank Zenon Xiu, Steven Miao, Yibo Cai, Zheng Xu, Ningsheng Jian,
and Joyce Kong for their guidance and review of this paper.

References
1.	Arm®, “Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile 		
		 Documentation” https://developer.arm.com/docs/ddi0487/latest

2.	“The software suite diy7”
		 http://diy.inria.fr/

3.	“A working example of how to use the herd7 Memory Model Tool”
		 https://community.arm.com/arm-community-blogs/b/architectures-and-processors-		
 	 blog/posts/how-to-use-the-memory-model-tool

4.	“How to generate litmus tests automatically with the diy7 tool”
		 https://community.arm.com/arm-community-blogs/b/architectures-and-processors-		
 	 blog/posts/generate-litmus-tests-automatically-diy7-tool

5.	“Running litmus tests on hardware using litmus7”	
		 https://community.arm.com/arm-community-blogs/b/architectures-and-processors-		
 	 blog/posts/running-litmus-tests-on-hardware-litmus7

All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained

in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of

the copyright holder. The product described in this document is subject to continuous developments and improvements. All particulars of the

product and its use contained in this document are given in good faith. All warranties implied or expressed, including but not limited to implied

warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information to the reader

about the product. To the extent permitted by local laws Arm shall not be liable for any loss or damage arising from the use of any information

in this document or any error or omission in such information.

© Arm Ltd. 2022 | June 2022 v1.2

https://developer.arm.com/docs/ddi0487/latest
http://diy.inria.fr/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/how-to-use-the-memory-model-tool
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/how-to-use-the-memory-model-tool
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/generate-litmus-tests-automatically-diy7-tool
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/generate-litmus-tests-automatically-diy7-tool
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/running-litmus-tests-on-hardware-litmus7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/running-litmus-tests-on-hardware-litmus7

